		_		His	story			
		Туре	Aut	hor	Citati	on	Literature Cutoff Date	
	Fı	Ill Evaluation	Balraj Singh, Am	eenah R. Farha	n NDS 107,19	23 (2006)	30-Apr-2006	
$Q(\beta^{-}) = -6925$ Note: Current of Mass measurem Additional info Nuclear structu	6; S(n)= evaluation ments: 1 prmation are calcu	12057 8; S(p) on has used th 985El01, 197 1. llations (levels	$P = 8549 4; Q(\alpha) = -40$ e following Q record 7De20, 1963Ri07.	076.3 9 2012 d -6907 15	2Wa38 12066 11 8545	4 -4074.5	<i>19</i> 2003Au03.	
				⁷⁴ Se	Levels			
				Cross Reference	e (XREF) Flags			
		A 74 B 74 C 74 D 58 E 64	As β^- decay (17.77) Br ε decay (25.4 min Br ε decay (46 min) Ni(¹⁹ F,3p γ) Ni(¹² C,2n γ), ⁶⁰ Ni(¹⁶ C)	d) F n) G Η Ι Ο,2pγ) J	65 Cu(12 C,p2n γ) 70 Ge(α, γ) 72 Ge(3 He,n) 72 Ge(16 O, 14 C) 74 Se(p,p')	K Cou L ⁷⁵ A M ⁷⁶ S	llomb excitation s(p,2nγ) e(p,t)	
E(level) ^{†‡}	J ^π @	$T_{1/2}^{\#}$	XREF			Comme	nts	
0.0 ^f	0+	stable	ABCDEFGHI JKLM	$%(ε)(β^+)=?, α$ β decay). $^{1/2}=4.07$ J ^π : no hyperfi	$\%(\varepsilon)(\varepsilon)=?$ (see 19) 0 fm 20 (2004An ne structure obse	993Hy02 fo 14). rved in mic	r experimental study of double	
634.74 ^{<i>f</i>} 6	2+	7.08 ps 9	(1950Ge05, 1949St07), consistent with J=0. ABCDEFG IJKLM μ =0.86 5 (1998Sp03) Q=-0.36 7 (1989Ra17,1978Le22) μ : projectile excitation and transient-field technique (1998Sp03). See al 2005St24 compilation. Q: from Coul. ex. (1978Le22). See also 2005St24 compilation. β_2 =0.337 (from (¹⁶ O, ¹⁴ C)), 0.26 4 (from (pol p,p')). β R=1.38 <i>14</i> (from (p,p')). J ^{π} : L(pol p,p')=L(p,t)=2. T _{1/2} : from B(E2)=0.388 5 in Coul. ex. other: 7.4 ps 6 (DSA method in					
853.83 9	0+	0.75 ns 5	BC EFG JKLM	J^{π} : (219 γ)(63 $T_{1/2}$: from B(min)), 0.52	$(5\gamma)(\theta)$ in ⁷⁴ Br ε (E2) in Coul. ex. ns 6 (centroid-sh	(46 min). L others: 0.83 hift in (p,p')	(p,p')=L(p,t)=0. 3 ns $14 (\gamma \gamma(t) \text{ in } {}^{74}\text{Br } \varepsilon (25.4)$	
1269.01 ^{<i>h</i>} 6	2+	4.0 ps 11	ABCDEFG JKLM	μ=1.10 <i>18</i> (19) XREF: M(120) μ: projectile e 2005St24 c βR=0.23 <i>3</i> (fr $J^{π}$: L(p,p')=L $T_{1/2}$: other: 3	998Sp03) 55). excitation and tran ompilation. om (p,p')). (p,t)=2. .3 ps 15 (Coul. e	nsient-field	technique (1998Sp03). See also	
1363.17 ^{<i>f</i>} 7	4+	1.86 ps 8	CDEFG JKLM	$ μ=2.0 4 (1993) $ $ μ$: projectile e 2005St24 c $ β_4=0.019 8 (f βR=0.09 I (f f Jπ: L(p,t)=L(f T1/2: from Be$	(35) (35) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37)	other: 2.73	technique (1998Sp03). See also ps 20 (from 1979Ki17 and	
1657.47 10	(0^{+})		BEG	J^{π} : γ to 2 ⁺ . N	No γ 's to 0 ⁺ and γ	4 ⁺ .		

Continued on next page (footnotes at end of table)

⁷⁴Se Levels (continued)

E(level) ^{†‡}	Jπ@	$T_{1/2}^{\#}$	XRE	EF	Comments
1838.65 9	(2^{+})		BC EFG	LM	J^{π} : γ to 0^+ .
1884 74 <mark>8</mark> 8	3+b	15 ps 6	BCDFF	I	
$2107.06^{h}.8$	A^+b	$1.0 \text{ ps} \ 7$	CDEE	тм	YDEE: $M(2101)$
2107.90 8	4	1.9 ps 7	CDEF	M	AKEP. M(2101).
$2231 45 \int 10$	6+ b	0.86 ps 17	CDEE		
2231.45° 10	(2^+)	0.00 ps 17	BC F	L	I^{π} : γ to 0^+
2319.65°	3-	23 ps 3	CDEE	м тягт	Y P E (M(2338))
2549.00- 10	5	25 ps 5	CDLI	LJKLII	$\beta_{2} = 0.140 \text{ (from } ({}^{16}\Omega {}^{14}\Omega))$
					$\beta R = 0.77 \ 8 \ (\text{from } (\mathbf{p}, \mathbf{p}')).$
					B(E3)(Coul. ex.)=0.021 5 (2002Ki06, evaluation).
					J^{π} : L(p,t)=(pol p,p')=3.
2378.59 11	$(1,2^+)^{\&}$		В		
2477.7 6	(2)		F		J^{π} : $\Delta J=0 \gamma$ to 2^+ .
2482 25	(2 ⁺)			M	J^{π} : L(p,t)=(2).
2563.43 9	$(2^+, 3, 4^+)^d$		CE	m	
2661.98 ^g 12	5+ b	1.7 ps 6	CDEF	Lm	
2718 10	0^+			M	$J^{\pi}: L(p,t)=0.$
2818.32 19	$(2^+,3,4^+)^{a}$		СE		
2831.56 ^k 12	4-	10 ps <i>3</i>	CDEF		J^{π} : $\Delta J=0$, (E1) γ to 4 ⁺ ; band assignment.
2842.63 ^J 10	5-0	7.3 ps 8	DEF	L	
2843.72 24	3^{-}			JM	J^{n} : L(p,p')=3; L(p,t)=(3).
2903 2	(0^+)			J	$J^{n}: L(p,p') = 4.$ $I^{\pi}: L(p,t) = (0)$
2918 23	$(2^+ 3 4^+)^a$		CF	11	J : L(p,t) = (0).
2086.65^{h} 13	(2',5,1') 6 ⁺ C				
3002.4	0		DEF	1	
3037.3 4	(2^{+})		С	-	J^{π} : γ to 0^+ .
3078.01 14	$(4)^{+}$		СE	J	XREF: J(3080).
					J^{π} : γ 's to 2 ⁺ and 4 ⁺ . L(p,p')=4 in (p,p') for a group at 3080 4.
3112.30 23	$(2^+, 3, 4^+)$		CE	M	XREF: M(3114).
C	L				J^{n} : γ 's to 2 ⁺ ; log <i>ft</i> =7.64 from 4 ⁽⁺⁾ .
3198.41 ^J 14	8+ 0	0.38 ps 4	DEF	L	
3200.17 17	(4)		C F		J^{n} : $\Delta J=(0) \gamma$ to 4^{+} .
3250.11 12	$(1,2^+)^{\alpha}$		BC		
3250.9 4	(2 to 5)		E	m	L=4 in (p,t) corresponds to 3251 or 3253 level.
3753 3 3	$(2 \text{ to } 6)^{e}$		C F	l m	J^{-1} ; γ to (5); absence of γ s to 0 and 2 distavois $J^{-1}(4)$. I^{π} ; if I (n n')-4 corresponds to this level, then $I^{\pi} - (A^{+})$.
3306.0.3	$(2 \text{ to } 0)^{e}$		C	5 m	J . If $L(p,p) = 4$ corresponds to this level, then $J = (4)$.
3379.38 25	(2^+)		c	М	J^{π} : L(p,t)=(2).
3382.63 ^k 14	6^{-b}	4.9 ps 17	DEF		
3515.95 <i>j</i> 15	7- b	35 ps 3	DEE		
3525 04 <mark>8</mark> 21	7+b	0.72 ps 24	DEE		
3529.4	5-	0.72 ps 24	DLI	1	$I^{\pi}: L(n, n') = 5$
3538 25	(6 ⁺)			M	J^{π} : L(p,t)=(6).
3539.72 11	$(1,2^+)^{\&}$		В		
3580.30 25	$(2^+)^{a}$		С	J	J^{π} : L(p,p')=(2).
3602 4	5-			J	J^{π} : L(p,p')=5.
3624.46 16	(2^{+})		В	М	XREF: M(2615).
2(74.95.23	(2+2,4+)		6 F		$J^{n}: \gamma \text{ to } 0^{+}; L(p,t)=(2).$
30/4.83 21	(2, , 5, 4)		СE		

⁷⁴Se Levels (continued)

E(level) ^{†‡}	J ^π @	$T_{1/2}^{\#}$	XRE	EF		Comments
3733.64 16	$(1,2^+)^{\&}$		В		M	XREF: M(3719).
3749 4	(4 ⁺)			J		J^{π} : L(p,p')=4.
3771.91 16	$(4^+)^a$		С	J	m	XREF: J(3780).
3781.7.3			F			J'': L(p,p')=4.
3788 27 11	$(1.2^+)^{\&}$		R		m	
$3841.60^{i}.10$	(1,2)		FF		м	XPEE (M(3858))
50-1.07 17	1		1.1			J^{π} : γ to 7^{-} : L(p,t)=(7): band assignment.
3845 4	3-			J		J^{π} : L(p,p')=3.
3928.62 24	(2 to 6)		С	J		XREF: J(3920).
						J^{π} : log ft=7.16 from 4 ⁽⁺⁾ ; γ to (4) ⁺ .
3929.2 ¹ 4	$(8^{+})^{d}$		F			
3930.56 18	$(0^+, 1)$		BC			J^{π} : log <i>ft</i> =5.9 from (0 ⁻); γ to 2 ⁺ .
3972.90 17	(2^{+})		В		m	J^{π} : γ to 0 ⁺ ; if L(p,t)=(2) corresponds to this level.
3980 4	(6^+)			J		J^{π} : L(p,p')=(6).
4005 4	2' (1.2+) &		_	J	m	$J^{*}: L(p,p^{*})=2.$
4044.37 25	$(1,2^+)^{\bullet\bullet}$		В			
4089.9 4	(2^{+})		R		м	XREE M(4109)
4074.44 20	(2)		b			J^{π} : γ to 0 ⁺ : L(p,t)=(2).
4118 4				J		
$4198.21^{k} 20$ 4224 4	8- b	1.4 ps 3	DEF	J		
4256.29 ^{<i>f</i>} 17	10+ b	0.21 ps 4	DEF			
4266.7 4	$(1.2^{+})^{\&}$	1	В			
4279 4	4+			J		J^{π} : L(p,p')=4.
4309.17 18	$(3,4^{+})$		С		m	XREF: I(4330).
						J^{π} : γ to 2 ⁺ ; log <i>ft</i> =6.6 from 4 ⁽⁺⁾ .
4342.5 4	(2^{+})		В	J	m	XREF: $J(4337)$.
1362 1						$J^{*}: \gamma \text{ to } 0^{\circ}; L(p,p) = (2).$
4302 4	$(1.2^+)^{\&}$		R	5		
440220121	(1,2)	0.58 mg 6	DEE			
4403.20 21	(3.4^+)	0.38 ps 0				I^{π} : α to 2^+ : log ft=6.1 from $A^{(+)}$
4441.07 21	(3,4)	0.57 ma 0				$J : Y = 0.1 \text{ from } 4^{-1}$.
4449.048 23	(1.0+)	0.37 ps 9	DEF			
4487.2 3	$(1,2^+)^{\circ\circ}$		в			$\pi_{\rm c}$, to 2^+ , log $\pi_{\rm c}$ 5.08 from $4^{(+)}$
4490.29 17	(3,4)		C E			J^{π} : γ to 2 ⁻ ; $\log f_{I}=5.98$ from $4^{(+)}$
4510.24 10	(3,4)		р			$J : \gamma \text{ to } 2 , \log \mu = 0.05 \text{ from } 4^{\circ} \text{ .}$
4550.49 24	$(1,2^{+})^{}$		ь F			
4579.94 25	(3.4.5)		C Î		m	J^{π} : log $f_{t}=6.26$ from $4^{(+)}$.
4586.15.20	$(3, 4^+)$		c		m	J^{π} : γ to 2 ⁺ : log ft=5.99 from 4 ⁽⁺⁾ .
4592.08 16	(4^+)		c	J	m	XREF: J(4595).
	· · ·					J^{π} : γ to 2^+ ; log <i>ft</i> =5.65 from $4^{(+)}$; L(p,p')=4.
4661.91 19	(3,4+)		С		M	XREF: M(4628).
						J^{π} : γ to 2 ⁺ ; log <i>ft</i> =5.83 from 4 ⁽⁺⁾ .
4677 4	3-		_	J		J'': L(p,p')=3.
4699.5 3	$(3,4^{+})$		C			J': γ to 2'; log <i>ft</i> =6.16 from 4 ⁽⁺⁾ .
4131.24	(3,41)		C	J	m	AKEF: $J(4/3\delta)$. I^{π} , $u \neq 0$, 2^{+} , $\log f_{t-6}$, 42 from $J^{(+)}$, if $I(u, u') = (2)$ corresponds to the in-
						J. γ to 2^{-} ; tog μ =0.45 from 4° γ ; if L(p,p)=(5) corresponds to this level, then J^{π} =(3 ⁻).

Continued on next page (footnotes at end of table)

⁷⁴Se Levels (continued)

E(level) ^{†‡}	J ^π @	T _{1/2} #	XRE	EF	Comments
4794.45 21	(3,4,5)		С	m	J^{π} : log <i>ft</i> =5.98 from 4 ⁽⁺⁾ ; if L(p,p')=(3) corresponds to this level, then $J^{\pi}=(3^{-})$.
4848.7 ⁱ 3	(9-)	0.40 ps +13-11	F		J^{π} : γ' s to 7 ⁻ and 9 ⁻ ; band assignment.
4877.49 ¹ 24	(10^{+})	*	F		J^{π} : γ' s to 8 ⁺ and 10 ⁺ ; band assignment.
5060.2 4			F		
5146 4	3-			J	J^{π} : L(p,p')=3.
5209.2 ^k 4	10 ^{-b}	0.9 ps 3	DEF		
5426 4	3-			J	$J^{\pi}: L(p,p')=3.$
5443.1 ^J 4	12+0	0.12 ps 3	DEF		
5491.2 ^J 4	11-0	0.23 ps 2	DEF		
5492.9 <mark>8</mark> 4	11+ ⁰		DF		
5928.5 ¹ 4	(11 ⁻) ^d	0.26 ps 7	F		
6014.8 ¹ 4	(12^{+})		F		J^{π} : γ 's to 10 ⁺ and 12 ⁺ ; band assignment.
6253.6 ^k 5	12 ^{-b}	<0.74 ps	DF		
6685.9 ⁸ 5	(13^{+})		DF		J^{π} : γ 's to 11 ⁺ and 12 ⁺ ; band assignment.
6686.9 ¹ 5	13 ^{-b}	0.22 ps 10	DEF		
6735.6 [†] 5	14 ⁺	0.135 ps 14	DEF		
7063.7 ¹ 8	(13 ⁻) ^{<i>d</i>}	<0.76 ps	F		
7206.9 ¹ 8	(14 ⁺) ^C		F		
7451.6 ^k 7	14 ⁻		DF		
7844.8 7	15 ⁻		F		E(level): this level is also related to the 3^- band, could Be due to band crossing.
7944.0 <mark>8</mark> 6	(15 ⁺) ^C		F		
7978.7 <mark>/</mark> 6	15 ^{-C}		DF		
8116.7 ^{<i>f</i>} 7	16+ <mark>b</mark>	0.075 ps 15	DF		
8537.3 ¹ 8	(16 ⁺) ^C		F		
8815.6 ^k 8	16 ⁻		F		
9294.4 <mark>8</mark> 9	$(17^{+})^{d}$		F		
9300.3 ^j 7	17 ⁻		F		
9680.5 ^f 9	18+ <mark>b</mark>	0.076 ps 21	DF		
10128.8 ¹ 11	(18 ⁺) ^C		F		
10370.5 ^k 11	$(18^{-})^{d}$		F		
10826.4 ⁸ 13	$(19^{+})^{d}$		F		
10926.3 <i>j</i> 12	(19 ⁻) ^d		F		
11360.2 ^{<i>f</i>} 12	20 ⁺ <i>C</i>		DF		
12104.5 ^k 15	$(20^{-})^{d}$		F		
13202.3^{f} 15	22 ⁺ <i>c</i>		F		
			-		

[†] Least squares fitted values from adopted γ -ray energies for levels populated in γ -ray studies. For levels populated in transfer reactions only, weighted average of available values taken.

^{\pm} In (³He,n), FWHM=500 keV, peaks are reported at 740 with L=(0), and at 2030(or 2330) and 3050 with L=(2), and at 3850.

⁴ From DSA and recoil-Doppler shift method in in-beam γ , unless stated otherwise. ^(a) Parity not given when only a range of spin values given. ^(a) γ to 0⁺. log *ft* value in ⁷⁴Br ε decay (25.4 min) will restrict J^{π} to 1 if J^{π} ⁷⁴Br g.s.=0⁻. ^(a) γ 's to 2⁺ and 4⁺.

⁷⁴Se Levels (continued)

- ^b From $\gamma(\theta)$, $\gamma\gamma(\theta)$, $T_{1/2}$ and band assignment in in-beam γ -ray studies.
- ^c From $\gamma(\theta)$, $\gamma\gamma(\theta)$ and band assignment in in-beam γ -ray studies.
- ^{*d*} From band assignment in in-beam γ -ray studies. ^{*e*} γ to 4⁺. Absence of γ 's to 0⁺ and 2⁺ disfavors J<4.
- ^f Band(A): g.s. band.
- ^g Band(B): 3^+ band.
- ^{*h*} Band(C): 2^+ band. ^{*i*} Band(C): 7^- band.
- ^{*j*} Band(E): 3^- band.
- ^{*k*} Band(F): 4^{-} band.
- ¹ Band(G): (8⁺) band. Probably related to excitation of $g_{9/2}$ neutron (1998Do09).

$\gamma(^{74}\text{Se})$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ ‡	$E_f \qquad J_f^{\pi}$	Mult. [#]	δ	α [@]	$I_{(\gamma+ce)}$	Comments
634 74	2+	634 78 10	100	$0.0 0^+$	E2				$B(E2)(W_{H}) = 42.0.6$
853.83	$\tilde{0}^{+}$	219.06 10	100 4	634.74 2 ⁺	E2		0.047		$B(E2)(W_{11}) = 77.7$
022.02	0	853.8	100 /	$0.0 0^+$	E2 F0		0.017	0.82.9	$a^{2}(F0/F2) = 0.203 \ 14 \ X(F0/F2) = 0.011 \ 5 \ a^{2}(F0) = 0.0231$
		055.0		0.0 0	LU			0.02)	$q_{\rm K}(10/12) = 0.205 {\rm M}$, ${\rm M}(10/12) = 0.011 {\rm S}$, p (10)=0.0251 22 (2005Ki02 evaluation)
1269.01	2+	634.26.10	100.8	634.74 2+	E2+M1	-5.6.16			$B(M1)(W,\mu)=0.0004$ 3: $B(E2)(W,\mu)=48.14$
120,101	-	00 1120 10	100 0	00	221111	010 10			δ : from $\gamma\gamma(\theta)$ in ⁷⁴ Br ε (46 min) Other: -2.6.2 from
									2.02 from 74 As β^-
		1260 02 7	52 3	$0.0 - 0^+$	F2				P(0) = AS p. B(E2)(W ₁₁)=0.80.23
1363 17	<i>4</i> ⁺	728 37 7	100	634742^+	E2 F2				B(E2)(Wu) = 80.4
1657 47	(0^+)	1022 74 9	100	634 74 2+	62				D(E2)(W.u.) = 60.4
1838.65	(0^{+})	984 82 10	100 5	853.83 0+					
1050.05	(2)	1203 93 9	22 11	634 74 2 ⁺	[M1 F2]				$\delta = 0.18.9 \text{ or } 1.5.3 (1992Ba68)$
1884 24	3+	521 07 12	10 3	$1363\ 17\ 4^+$	[[[]]]				0 0.10 y 01 1.5 5 (1) 2 Bu00).
100 112 1	0	615.18 7	100.8	$1269.01 2^+$	(M1+E2)	+0.3 1			$B(M1)(W.u.)=(0.029 \ 1.3); B(E2)(W.u.)=(10 \ 8)$
		1249.45 15	89 12	634.74 2+	(M1+E2)				
2107.96	4+	744.75 8	40 4	1363.17 4+	(M1+E2)				B(M1)(W.u.)<0.0067: B(E2)(W.u.)<17
					· /				$\delta = -4.3 \ 3 \text{ or } 2.4 \ 2 \ (1992Ba68).$
									Mult.: $\Delta J=0$ transition.
		838.93 12	100 8	1269.01 2+	E2				B(E2)(W.u.)=24 9
		1473.21 12	25 3	634.74 2+	[E2]				B(E2)(W.u.)=0.35 14
2231.45	6+	868.21 9	100	1363.17 4+	E2				B(E2)(W.u.)=72 15
2314.05	(2^{+})	1044.88 13	46 5	1269.01 2+					
		1460.3 2	100 8	853.83 0+					
		1679.4 2	92 10	634.74 2+					
2349.66	3-	511.0 3	≈ 14	$1838.65 (2^+)$					
		986.5 2	57 11	1363.17 4+	(E1)				$B(E1)(W.u.)=3.8\times10^{-6} 10$
		1080.4 2	100 14	1269.01 2+	(E1)				$B(E1)(W.u.)=5.1\times10^{-6}$ 11
		1714.9 <mark>&</mark> 2	91 9	634.74 2+	(E1)				$B(E1)(W.u.) = 1.15 \times 10^{-6} 21$
2378.59	(1.2^{+})	1109.6 2	50 6	1269.01 2+	× ,				
		1524.6 4	28 6	853.83 0+					
		1743.9 2	100 28	634.74 2+					
		2378.3 4	28 11	$0.0 0^+$					
2477.7	(2)	1843.1 6	100	634.74 2+	(D)				Mult.: $\Delta J=0$ transition.
2563.43	$(2^+, 3, 4^+)$	679.04 12	12 2	1884.24 3+					
		724.9 5	12 5	1838.65 (2 ⁺)					
		1200.37 12	100 11	1363.17 4+					
		1294.4 <i>1</i>	39 5	1269.01 2+					
		1928.8 4	12 2	634.74 2+					
2661.98	5+	777.68 13	100 7	1884.24 3+	E2				B(E2)(W.u.)=43 17
		1299.04 20	47 16	1363.17 4+					
2818.32	$(2^+, 3, 4^+)$	979.5 2	25 5	1838.65 (2+)					

6

$\gamma(^{74}Se)$ (continued)

E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
2818.32	$(2^+, 3, 4^+)$	1455.5 3	100 15	1363.17	4+		
2831.56	4-	481.5 3	<15	2349.66	3-		
		1468.43 13	100 13	1363.17	4+	(E1)	$B(E1)(W.u.)=1.1\times10^{-5} 4$
						()	Mult.: $\Lambda J=0$ transition.
2842.63	5-	493.01 11	93 7	2349.66	3-	E2	B(E2)(W.u.)=50 7
		611.4 2	48.5	2231.45	6+	(E1)	$B(E1)(W.u.)=4.1\times10^{-5}$ 7
		734.56.15	100.7	2107.96	4+	(E1)	$B(E1)(Wu) = 4.9 \times 10^{-5} 7$
		1479 44 15	29.3	1363 17	4+	(E1)	$B(E1)(Wu) = 1.7 \times 10^{-6} 3$
2918 43	$(2^+ 3 4^+)$	1080 1 4	19 4	1838.65	(2^+)	(L1)	D(D1)(11.0.)=1.1710 5
2910.15	(2,3,1)	1555.4.3	13.2	1363.17	(2) 4 ⁺		
		1649.4 2	14 2	1269.01	2+		
		2283.5 2	100 15	634.74	2+		
2986.65	6+	878.68 10	100 13	2107.96	4+		
		1623.5 7	95 18	1363.17	4+	Q	
3037.3	(2^{+})	2183.4 3	100	853.83	0^{+}		
3078.01	$(4)^+$	763.6 2	3.7 8	2314.05	(2^{+})		
		1194.0 <i>3</i>	1.5 3	1884.24	3+		
		1714.9 <mark>&</mark> 2	100 10	1363.17	4+		
		2443.7 4	6.0 15	634.74	2+		
3112.30	$(2^+, 3, 4^+)$	797.3 5	100	2314.05	(2^+)		
		1843.1 <i>3</i>	<20	1269.01	2+		
		2478.4 ^{&} 4	<10	634.74	2+		
3198.41	8+	966.98 10	100	2231.45	6+	E2	B(E2)(W.u.)=95 10
3200.17	(4)	368.5 2	50 10	2831.56	4-		
		723 ^a 1	<50	2477.7	(2)		
		850.1 <i>3</i>	100 50	2349.66	3-		
		1837.6 <i>3</i>	50 15	1363.17	4+	(D)	Mult.: $\Delta J=0$ transition.
3250.11	$(1,2^{+})$	871.4 5	3.5 17	2378.59	$(1,2^+)$		
		936.4 2	10 2	2314.05	(2^+)		
		1981.0 2	18 1	1269.01	2		
		2396.1 2	38 2	853.83	0' 2+		
		2015.2 2	100 5	034.74	2 · 0+		
3250.0	(2 to 5)	3249.9 J 1366 6 1	83 4 100	1884 24	0 2+		
3253.3	(2 to 5)	1800.0 4	100	1363 17	3 ∕1+		
3306.0	(2 to 0)	1198.0.5	57 14	2107.96	4 ⁺		
5500.0	(2 10 0)	1421 7 3	100 14	1884 24	3+		
3379 38	(2^{+})	1494.5 3	100 14	1884 24	3+		
2277.20	(-)	2745.7 4	91 23	634.74	2+		
3382.63	6-	538.9 2	69 6	2842.63	5-	(M1)	B(M1)(W.u.)=0.0064 24
		551.12 15	100 8	2831.56	4-	E2	B(E2)(W.u.)=40 15

7

From ENSDF

$\gamma(^{74}Se)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#	Comments
3382.63	6-	720.8 2	50 10	2661.98	5+	(E1)	$B(E1)(W.u.)=3.4\times10^{-5}$ 14
		1151.0 2	90 13	2231.45	6+	(E1)	$B(E1)(W.u.) = 1.5 \times 10^{-5} 6$
3515.95	7-	529.2 4	<4	2986.65	6+	ĨE1	$B(E1)(W,u)=1.3\times10^{-5}$ 13
		673.38 15	100 8	2842.63	5-	E2	B(E2)(W.u.)=58 8
		1284.5 <i>3</i>	8 1	2231.45	6+	[E1]	$B(E1)(W.u.)=3.8\times10^{-6}$ 7
3525.04	7+	863.4 <i>3</i>	100 12	2661.98	5+	(E2)	B(E2)(W.u.)=63 24
		1293.0 <i>3</i>	41 14	2231.45	6+		
3539.72	$(1,2^{+})$	1161.3 <i>3</i>	12 4	2378.59	$(1,2^+)$		
		1225.7 <i>1</i>	81 8	2314.05	(2^{+})		
		1700.9 3	46 8	1838.65	(2^{+})		
		1882.3 2	96 12	1657.47	(0^+)		
		2270.6 6	100 19	1269.01	2		
		2085.4 0	15 8	624 74	0^{+}		
		2904.3 3	100 8	054.74	2 0 ⁺		
3580 30	(2^{+})	2217 1 3	100 20	1363.17	$\frac{1}{4^+}$		
2200.20	(2)	2015.5 % 1	<60	634.74	2+		
3624 46	(2^{+})	1310 1 2	91	2314.05	(2^+)		
5021.10	(2)	2356.0 4	14.2	1269.01	2^+		
		2770.8 5	37 2	853.83	$\bar{0}^{+}$		
		2990.1 30	62	634.74	2+		
		3624.6 <i>3</i>	100 3	0.0	0^{+}		
3674.85	$(2^+, 3, 4^+)$	1566.4 <i>3</i>	10 2	2107.96	4+		
		2312.1 6	100 14	1363.17	4+		
		3040.4 X 3	<32	634.74	2+		
3733.64	$(1,2^{+})$	2465.0 <i>3</i>	54 7	1269.01	2+		
		2879.7 2	25 7	853.83	0+		
		3098.2 6	25 7	634.74	2+		
2771.01	(4^{\pm})	3/33.3 4	100 7	0.0	(2^+)		
5771.91	(4)	1955.0 5	100 40	1000.00	(2)		
		2408.7 5	100 40	1269.01	+ 2+		
		3137 1 3	70 10	634 74	$\frac{2}{2^{+}}$		
3781.7		399.2 3	100	3382.63	- 6-		
3788.27	$(1,2^{+})$	1409.7 2	16 3	2378.59	$(1,2^+)$		
		1474.5 2	27 3	2314.05	(2+)		
		1949.6 2	37 <i>3</i>	1838.65	(2^{+})		
		2130.6 2	71 <i>3</i>	1657.47	(0^{+})		
		2518.3 8	14 <i>3</i>	1269.01	2+		
		2934.2 4	19 <i>3</i>	853.83	0^{+}		
		3788.0 <i>3</i>	100 5	0.0	0^{+}		

 ∞

 $^{74}_{34}\mathrm{Se}_{40}$ -8

$\gamma(^{74}Se)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	Comments
3841.69	7-	325.84 15	72 7	3515.95 7-	(D)	Mult.: $\Delta J=0$ transition.
		1609.6 4	100 19	2231.45 6+	D	
3928.62	(2 to 6)	850.6 2	100	$3078.01 (4)^+$		
3929.2	(8+)	730.5 8	100 67	3198.41 8+		
	. ,	942.7 5	37 10	2986.65 6+		
		1698.4 ^a 12	≈33	2231.45 6+		
3930.56	$(0^+, 1)$	2661.6 2	100 6	1269.01 2+		
		3295.5 <i>3</i>	53 <i>3</i>	634.74 2+		
3972.90	(2^{+})	2088.7 15	<14	1884.24 3+		
		2704.0 3	67 6	1269.01 2+		
		3119.0 12	39 6	853.83 0+		
		3338.6 18	19 6	634.74 2+		
		3972.7 2	100 6	$0.0 0^+$		
4044.37	$(1,2^{+})$	2387.4 5	47 <i>13</i>	1657.47 (0+)		
		3190.2 4	100 13	853.83 0+		
		3410.0 10	40 13	634.74 2+		
		4044.1 4	87 <i>13</i>	$0.0 0^+$		
4089.9		573.9 <i>3</i>	100	3515.95 7-		
4094.44	(2^{+})	1715.7 2	100 14	$2378.59(1,2^+)$		
		2437.5 4	52 10	$1657.47 (0^+)$		
		3241.0 15	48 10	853.83 0+		
		3460.0 12	90 10	634.74 2+		
4100.01	0-	4093.9 /	38 10	0.0 0'	D	
4198.21	8	682.1 3	14 3	3515.95 /	D	$D(D)/(W \rightarrow 52.12)$
1256 20	10+	815.0 2	100 8	3382.03 0 2109 41 9 ⁺	E2 E2	B(E2)(W.u.)=53/13 B(E2)(W.u.)=110/24
4230.29	$(1, 2^{+})$	1037.89 10	100 8	$5196.41 \ 6$	EZ	D(E2)(W.u.)=110/21
4200.7	(1,2)	3031.9 J	100 8	0.000^{+}		
4300 17	(3.1^{+})	4200.5 5	43 8	0.0 0 2563 43 (2 ⁺ 3 4 ⁺)		
4309.17	(3,4)	1004 8 3	100 20	2303.43 (2, 3, 4) $2314.05 (2^+)$		
		$2945.5^{\&} 4$	<60	$1363.17 4^+$		
		3040 4 & 3	<240	1269.01 2+		
4342.5	(2^{+})	3488.6.8	29.10	853.83 0+		
15 12.5	(2)	4342.4 4	100 14	$0.0 0^+$		
4379.9	(1.2^{+})	2541.5.5	8.3	1838.65 (2 ⁺)		
	(-,-)	3110.2 18	83	1269.01 2+		
		3526.1 8	15.3	853.83 0+		
		3745.1 6	15 3	634.74 2+		
		4379.6 4	100 6	$0.0 0^+$		
4403.20	9-	887.23 15	100	3515.95 7-	E2	B(E2)(W.u.)=96 10
4441.67	$(3,4^{+})$	2333.2 3	75 8	2107.96 4+		

9

 $^{74}_{34}$ Se $_{40}$ -9

 $^{74}_{34}{
m Se}_{40}$ -9

$\gamma(^{74}Se)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	Comments
4441.67	(3,4+)	3173.1 <i>3</i> 3806 7 5	100 17	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
4449.64	9+	924.53 <i>15</i> 1251 4 <i>4</i>	100 6	3525.04 7 ⁺ 3198.41 8 ⁺	E2 D	B(E2)(W.u.)=61 12
4487.2	(1,2 ⁺)	3852.4 <i>3</i> 4486 9 <i>10</i>	100 <i>10</i> 15 <i>10</i>	$634.74 \ 2^+$	D	
4496.29	(3,4+)	2388.1 2	81 <i>13</i>	2107.96 4 ⁺		
4516.24	(3,4+)	3227.5 ²² 5 3861.8 5 1853.8 3 1952.8 3 3153 3 3	<50 100 <i>19</i> 45 <i>9</i> 32 <i>6</i> 100 <i>18</i>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
4536 49	$(1 2^+)$	3133.5 5 3247.5 10 3881.6 5 2158 0 4	<pre><45 <3 9 23 9</pre>	1303.17 + 4 $1269.01 + 2^{+}$ $634.74 + 2^{+}$ $2378 + 59 + (1 + 2^{+})$		
+550.+9	(1,2)	3267.5 8 3901.5 <i>3</i> 4538.0 <i>20</i>	36 9 100 9 9 5	$\begin{array}{c} 2.578.59 & (1,2^{-}) \\ 1269.01 & 2^{+} \\ 634.74 & 2^{+} \\ 0.0 & 0^{+} \end{array}$		
4544.5		346.2 2 762.9 <i>4</i>	100 <i>17</i> 83 25	4198.21 8 ⁻ 3781.7		
4579.94	(3,4,5)	2472.2 <i>4</i> 2695.5 3	100 <i>13</i> 100 <i>13</i>	2107.96 4 ⁺ 1884.24 3 ⁺		
4586.15	(3,4 ⁺)	1508.0 3	18 4	3078.01 (4) ⁺		
4592.08	(4 ⁺)	2478.4 4 2701.8 <i>3</i> 3951.5 <i>7</i> 2028.2 <i>3</i>	<38 100 <i>15</i> 92 <i>15</i> <12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
		2485.6 <i>4</i> 2708.5 <i>3</i>	10 <i>3</i> 15 <i>3</i>	2107.96 4 ⁺ 1884.24 3 ⁺		E_{γ} : level-energy difference=2484.1.
4661.91	(3,4+)	3227.5 ^{&} 3 3323.2 4 3957.6 6 2098.7 3 2825 1 10	<22 15 3 100 <i>12</i> 33 7	$\begin{array}{ccccccc} 1363.17 & 4^+ \\ 1269.01 & 2^+ \\ 634.74 & 2^+ \\ 2563.43 & (2^+,3,4^+) \\ 1838 & 65 & (2^+) \end{array}$		E_{γ} : poor fit. Level-energy difference=3228.8.
		3297.7 <i>3</i> 3393 8 ^{&} <i>4</i>	100 20	$1363.17 \ 4^+$ $1269.01 \ 2^+$		E_{γ} : level-energy difference=3298.7.
4699.5	(3,4+)	4027.1 7 3336.3 <i>3</i> 4064 4 <i>11</i>	80 <i>13</i> 100 <i>15</i> 16 5	$\begin{array}{c} 634.74 & 2^{+} \\ 1363.17 & 4^{+} \\ 634.74 & 2^{+} \end{array}$		
4757.2	(3,4+)	3393.8 ^{&} 4	<100	1363.17 4+		

$\gamma(^{74}Se)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} ‡	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
4757.2	(3.4^+)	4123.5 12	120 8	634.74	2+		
4794.45	(3.4.5)	1022.7 2	31 4	3771.91	(4^{+})		
	(-))-)	3430.8 3	100 14	1363.17	4 ⁺		
4848.7	(9^{-})	445.5 3	17 4	4403.20	9-	[M1.E2]	B(M1)(W.u.)<0.09; B(E2)(W.u.)<665
	(-)	1007.1 3	100 15	3841.69	7-	[E2]	B(E2)(W.u.)=63+22-25
4877.49	(10^{+})	621.2 2	100 13	4256.29	10^{+}	(D)	Mult.: $\Delta J=0$ transition.
		948.4 5	75 9	3929.2	(8^{+})		
		1679 ^a 1	≈31	3198.41	8+		
5060.2		657.0 <i>3</i>	100	4403.20	9-		
5209.2	10-	1011.0 <i>3</i>	100	4198.21	8-	(E2)	B(E2)(W.u.)=32 11
5443.1	12^{+}	1186.7 4	100	4256.29	10^{+}	E2	$B(E2)(W.u.) = 1.1 \times 10^2 3$
5491.2	11-	1088.0 <i>3</i>	100	4403.20	9-	E2	B(E2)(W.u.) = 87.8
5492.9	11^{+}	1042.8 5	100 14	4449.64	9+	0	
		1236.9 5	24 6	4256.29	10^{+}	Ď	
5928.5	(11^{-})	1079.7 <i>3</i>	100	4848.7	(9^{-})	[E2]	B(E2)(W.u.)=80 22
6014.8	(12^{+})	571.7 <i>3</i>	100 14	5443.1	12+		
		1137.5 6	95 48	4877.49	(10^{+})		
		1759 2	≈48	4256.29	10+		
6253.6	12^{-}	1044.4 <i>3</i>	100	5209.2	10^{-}	E2	B(E2)(W.u.)>33
6685.9	(13^{+})	1192.9 6	100 17	5492.9	11+	Q	
		1243.1 6	23 7	5443.1	12^{+}		
6686.9	13-	1195.7 <i>3</i>	100	5491.2	11-	E2	B(E2)(W.u.)=6.E+1 3
6735.6	14^{+}	1292.4 4	100	5443.1	12^{+}	E2	B(E2)(W.u.)=63 7
7063.7	(13^{-})	1135.2 6	100	5928.5	(11^{-})	[E2]	B(E2)(W.u.)>21
7206.9	(14^{+})	1193.0 12	100 33	6014.8	(12^{+})		
		1763.3 10	53 <i>13</i>	5443.1	12^{+}	(Q)	
7451.6	14-	1198.0 4	100	6253.6	12-	Q	
7844.8	15-	1157.8 5	100	6686.9	13-	(Q)	
7944.0	(15^{+})	1208.2 6	47 10	6735.6	14+	D	
		1258.2 5	100 8	6685.9	(13^{+})	Q	
7978.7	15-	1291.8 4	100	6686.9	13-	(Q)	
8116.7	16+	1381.1 4	100	6735.6	14+	E2	B(E2)(W.u.)=81 17
8537.3	(16^{+})	1330.5 6	100 19	7206.9	(14 ⁺)		
0015		1801.6 8	19 7	6/35.6	14+	(Q)	
8815.6	16	1364.0 5	100	7451.6	14	(Q)	
9294.4	$(1^{7})^{+}$	1350.4 6	100	7944.0	(15 ⁺)		
9300.3	$1'/^{-}$	1321.6 4	100 16	/9/8.7	15	$\langle \mathbf{O} \rangle$	
0(00.5	10+	1455.4 4	100 16	/844.8	15	(Q)	$D(TO)(ML \rightarrow AO(IO))$
9680.5	18	1563.8 6	100	8116.7	10	E2	$B(E2)(W.u.)=45 \ 12$
10128.8	(18')	1591.5 7	100	8537.3	(16')	Q	
103/0.5	(18 ⁻)	1554.8 7	100	8815.6	10		

11

 $_{34}^{74}\mathrm{Se}_{40}$ -11

γ ⁽⁷⁴Se) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]
10826.4	(19^{+})	1532 <i>I</i>	100	9294.4	(17^{+})	
10926.3	(19 ⁻)	1626 <i>1</i>	100	9300.3	17^{-}	
11360.2	20^{+}	1679.7 7	100	9680.5	18^{+}	Q
12104.5	(20^{-})	1734 <i>1</i>	100	10370.5	(18^{-})	
13202.3	22^{+}	1842 <i>1</i>	100	11360.2	20^{+}	(Q)

[†] Weighted average taken, whenever possible.
[‡] Photon branching ratios. Weighted average from various studies.
[#] From measured T_{1/2} of levels and RUL of Weisskopf estimates for transitions of E2 or M2 multipolarity.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Multiply placed.

^{*a*} Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas Legend Level Scheme Intensities: Relative photon branching from each level γ Decay (Uncertain) ----1 1842 (0.100 22^{+} 13202.3 1,134 100 (20^{-}) 12104.5 + 1679, 9100 20^{+} 11360.2 1532 100 1050 (19⁻) 10926.3 · 159.5 0100 | (19^+) 10826.4 1554.8 (18⁻) 10370.5 + 135,40,00 (18^+) 10128.8 1503.8 L °07 · 18^{+} 9680.5 0.076 ps 21 13501 Ş $\frac{17^{-}}{(17^{+})}$ 1 1364.0 [0] 9300.3 $\begin{bmatrix} 1^{\hat{s}_{0}} \\ 1^{\hat{s}_{2}} \\ 1^{\hat{s}_{2}} \\ \hat{s}^{\hat{s}_{2}} \\ 1^{\hat{s}_{2}} \\$ 9294.4 100 E2 1291,81 10,10 10,10 8815.6 16-1282 0 00 (16^{+}) 8537.3 .8 138) õ 16^{+} 8116.7 0.075 ps 15 $\frac{15^{-}}{(15^{+})}$ 7978.7 9 (135) (135) (135) (135) 7944.0 0.8017 -60 E-08 7844.8 15-1193.0 7451.6 14-8 ~ Ŋ Ş (14^{+}) 7206.9 -0 (13-) <0.76 ps 7063.7 ¥ 0.135 ps *14* 0.22 ps *10* 14^{+} 6735.6 ¥ $\frac{13^{-}}{(13^{+})}$ 6686.9 1044 ć E) 6685.9 5 6253.6 <0.74 ps 12 (12^+) 6014.8 ¥ (11^{-}) 0.26 ps 7 5928.5 5492.9 11^{+} Ś 11-¥. Ş 5491.2 0.23 ps 2 65₂₀ ¥ 8 2 0 0.12 ps 3 12^{+} 5443.1 680 10 5209.2 0.9 ps 3 5060.2 V (10^+) 4877.49 (9-) 0.40 ps +13-11 4848.7 9+ 4449.64 0.57 ps 9 ¥ 0.58 ps 6 9-4403.20 0.21 ps 4 10^{+} 4256.29 $\frac{8^{-}}{(8^{+})}$ 4198.21 1.4 ps 3 3929.2 3198.41 0.38 ps 4 8+ 0^+ 0.0 stable

 $^{74}_{34}{\rm Se}_{40}$

Level Scheme (continued)

 $^{74}_{34}{
m Se}_{40}$

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

⁷⁴₃₄Se₄₀

Level Scheme (continued)

Intensities: Relative photon branching from each level

⁷⁴₃₄Se₄₀

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{74}_{34}{
m Se}_{40}$

Level Scheme (continued)

 $^{74}_{34}{\rm Se}_{40}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{74}_{34}{\rm Se}_{40}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

Level Scheme (continued)

 $^{74}_{34}{
m Se}_{40}$

⁷⁴₃₄Se₄₀

⁷⁴₃₄Se₄₀