$^{74}_{34}$ Se₄₀-1

58 Ni(19 F,3p γ) 1990Co21

History

	Туре	Author	Citation	Literature Cutoff Date	
	Full Evaluation	Balraj Singh, Ameenah R. Farhan	NDS 107, 1923 (2006)	30-Apr-2006	
Includes reactions	: ¹² C(⁶⁴ Ni,2nγ); ⁴⁸	Ti(32 S, $\alpha 2$ p γ); 51 V(28 Si,p $\alpha \gamma$); 52 Cr(28	Si, α 2p γ); ⁵⁴ Fe(²⁴ Mg,4p γ)	$; {}^{60}\text{Ni}({}^{16}\text{O},2p\gamma);$	
63Cu(14N,2pn	γ); ⁶⁴ Ni(¹² C,2n γ);	${}^{64}\text{Ni}({}^{16}\text{O},\alpha 2n\gamma); {}^{65}\text{Cu}({}^{11}\text{B},2n\gamma); {}^{65}\text{Cu}({}^{11}\text{B},2n\gamma)$	$\mu(^{12}C,p2n\gamma); ^{72}Ge(\alpha,2n\gamma);$	73 Ge(α ,3n γ).	
1990Co21 (also 19	987Gr26): ⁴⁸ Ti(³² S	$(\alpha 2p\gamma)$ E=106 MeV, ⁵⁸ Ni(¹⁹ F,3p γ) E	=62 MeV. Measured γ , $\gamma\gamma$	γ , T _{1/2} (DSA method),	
$\gamma\gamma(\theta)$ (DCO).	1987Gr26: 52Cr(²⁸ S	$Si_{\alpha}(\alpha 2p\gamma)$ E=98 MeV, The g.s. band up	p to 22 ⁺ reported with a c	ascade of 11 transitions. Above	
16 ⁺ , however,	there are difference	es in the transitions in the cascade as	shown in 1987Gr26 and 1	1990Co21.	
Other measurement	nts:				
2001Pa53: ⁵⁴ Fe(²⁴	⁴ Mg,4pγ) E=104 N	IeV, measured $T_{1/2}$ (DSA method). Li	fetimes of 3 levels from 1	8^+ to 22^+ .	
1999Lo17: ⁵⁸ Ni(¹)	⁹ F,3pγ) E=70 MeV	, measured $T_{1/2}$ (DSA method). Lifeti	mes of 6 levels In g.s. bar	nd from 8^+ to 18^+ .	
1999Mu21: ⁵¹ V(²	⁸ Si,p $\alpha\gamma$) E=115 M	eV, measured T _{1/2} (DSA method). Lif	etimes of 6 levels from 8-	to 13 ⁻ .	
1998Do09: 65Cu(1	¹² C,p2nγ) E=50 M	eV. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$, and $\gamma\gamma(\theta)(I$	DCO) using PITT-FSU arr	ay with 9	
Compton-supp	pressed Ge detector	s. Results are given In a separate data	aset: ${}^{65}Cu({}^{12}C,p2n\gamma)$.		
1990MoZX: ¹² C(⁶	⁵⁴ Ni,2nγ) E=195 M	IeV, measured $\gamma(\theta, H)$, g-factor.			
1989Ad01: ⁷³ Ge(a	α ,3n γ) E=40 MeV,	65 Cu(12 C,p2n γ) E=42 MeV. Measure	ed γ ,T _{1/2} (DSA and recoil-	distance Doppler shift	
methods).					
1000 A 00 60 M.(1	600) F 50 M		·· ·· ·1 1		

1982An09: ⁶⁰Ni(¹⁶O,2p γ) E=56 MeV, measured γ (t), T_{1/2}(Doppler-shift attenuation method).

1979Pi05 (also 1977PiZR,1976Pi07): 60 Ni(16 O,2p γ) E=45 MeV; 64 Ni(12 C,2n γ) E=39 MeV; 65 Cu(11 B,2n γ) E=29 MeV. Measured γ , $\gamma(\theta)$, $\gamma\gamma(\theta)$. Lifetime results are included here whereas detailed data are given In a separate dataset: 64 Ni(12 C,2n γ), 60 Ni(16 O,2p γ).

1979An14: ⁶⁴Ni(¹⁶O, α 2n γ) E=80 MeV, measured E γ -E γ correlations for the continuum.

1979Ki17: 60 Ni(16 O,2p γ) E=42, 45, 50, 55 MeV; 63 Cu(14 N,2pn γ) E=50 MeV; 65 Cu(12 C,p2n γ) E=48 MeV. Measured $T_{1/2}$ (DSA and recoil-Doppler shift methods).

1976Ha10: ⁶⁴Ni(¹⁶O, α 2n γ) E=42-81 MeV, measured γ , $\alpha\gamma$ coincidences, T_{1/2}(DSA method). Only g.s. band up to J=12 reported.

1973Wy01, 1971WyZX, 1970Li11: ⁷²Ge(α ,2n γ) E=27.5 MeV. γ , ce data on g.s. band up to J^{π}=8⁺ reported. 1970No03: 60 Ni(16 O,2p γ) E=42-57 MeV. γ , $\gamma\gamma$ data for g.s. band up to J=8.

E(level) [‡]	$J^{\pi \dagger}$	$T_{1/2}^{\#}$	Comments				
0.0	0^{+}						
634.90 <mark>&</mark> 16	2^{+}	7.4 ps 6	T _{1/2} : weighted average of 7.3 ps 6 (1979Ki17), 9.7 ps 28 (1989Ad01).				
1268.81 <i>16</i>	2^{+}	4.0 ps 11	$T_{1/2}$: from 1979Ki17.				
1363.10 ^{&} 19	4+	2.73 ps 20	T _{1/2} : weighted average of 2.4 ps 6 (1979Ki17), 2.77 ps 21 (1989Ad01).				
1884.02 ^c 19	3+ @	1.5 ps 6	T _{1/2} : from 1979Ki17.				
2107.60 19	4+	1.9 ps 7	$T_{1/2}$: from (1979Ki17).				
2231.04 ^{&} 22	6+	0.86 ps 17	T _{1/2} : weighted average of 1.2 ps 6 (1979Ki17), 1.0 ps 3 (DSA method) (1979Ki17), 1.04 ps 21, 0.97 ps 21 (1989Ad01), 0.53 ps 11 (DSA method) (1990Co21) and 1.66 ps 21 (DSA method)(1979Pi05).				
2349.13 ^a 19	3-	23 ps 3	T _{1/2} : weighted average of 25 ps 4 (1979Ki17), 17 ps 7 (1989Ad01).				
2661.53 ^c 21	5+ @	1.7 ps 6	T _{1/2} : from 1979Ki17.				
2830.92 ^b 24	(4 ⁻)	10 ps 3	T _{1/2} : from 1989Ad01.				
2842.18 ^{<i>a</i>} 20	5^{-}	7.3 ps 8	$T_{1/2}$: weighted average for 7.1 ps 8 (1979Ki17), 9.7 ps 28 (1989Ad01).				
2980.3 4	(0)	0.00 (J . FIOII 1996D009. III 1990C021, $J = (3, 0)$.				
3197.84 5	8	0.38 ps 4	$T_{1/2}$: DSA method. Weighted average of 0.263 ps 35 (1999Lo17), 0.55 ps 7 (1979Pi05), 0.67 ps 7 (1976Ha10), 0.83 ps 21 (1979Ki17), 0.58 ps 14, 0.49 ps 14 (1989Ad01) and 0.374 ps 21 (1990Co21).				
3382.12 ^b 22	(6 ⁻)	4.9 ps 17	$T_{1/2}$: from (1989Ad01).				
3515.6 ^{<i>a</i>} 3	7-	3.5 ps <i>3</i>	$T_{1/2}$: weighted average of 3.6 ps 4 (1979Ki17), 3.2 ps 7 (1989Ad01) and 3.5 ps 14 (DSA				

Continued on next page (footnotes at end of table)

⁵⁸Ni(¹⁹F,3pγ) **1990Co21** (continued)

⁷⁴Se Levels (continued)

E(level) [‡]	$J^{\pi \dagger}$	$T_{1/2}^{\#}$	Comments		
			method, 1979Pi05).		
3524.7 [°] 3	7 ⁺ @	0.72 ps 24	T _{1/2} : weighted average of 1.8 ps <i>10</i> (1979Ki17), 1.1 ps <i>3</i> (1989Ad01) and 0.49 ps <i>21</i> (DSA method, 1979Pi05).		
4197.7 ^b 3	(8 ⁻)	1.4 ps 3	$T_{1/2}$: from 1989Ad01. Other: 1.3 ps +5-4 (DSA method 1999Mu21).		
4255.2 ^{&} 6	10+	0.21 ps 4	T _{1/2} : DSA method. Weighted average of 0.139 ps <i>14</i> (1999Lo17), 0.49 ps <i>14</i> (1979Ki17), 0.47 ps <i>4</i> (1976Ha10), 0.37 ps 7 (1979Pi05), 0.22 ps <i>3</i> , 0.35 ps 6 (1989Ad01) and 0.243 ps <i>21</i> (1990Co21).		
4402.7 ^{<i>a</i>} 5	9-	0.58 ps 6	$T_{1/2}$: DSA method. Weighted average of 0.83 ps 56 (1979Ki17), 0.49 ps 14 (1979Pi05), 0.76 ps 14 (1989Ad01) and 0.55 ps 7 (1990Co21).		
4449.2 [°] 5	9+ <mark>@</mark>	0.57 ps 9	T _{1/2} : weighted average of 1.8 ps <i>10</i> (1979Ki17), 1.1 ps <i>5</i> (DSA method, 1979Ki17), 0.42 ps <i>14</i> (DSA method 1979Pi05), 0.58 ps <i>10</i> and 0.9 ps <i>3</i> (1989Ad01).		
5208.7 <mark>b</mark> 5	(10 ⁻)	0.9 ps 3	$T_{1/2}$: from 1989Ad01. Other: 0.30 ps +12-9 (DSA method 1999Mu21).		
5441.8 ^{&} 10	12+	0.12 ps 3	T _{1/2} : DSA method. Weighted average of 0.062 ps 21 (1999Lo17), 0.24 ps 7 (1979Ki17), 0.21 ps 10 (1979Pi05), 0.28 ps 4 (1976Ha10), 0.17 ps 3 (1989Ad01) and 0.111 ps 14 (1990Co21).		
5490.5 ^a 7	11-	0.23 ps 2	$T_{1/2}$: DSA method. Weighted average of 0.26 ps 7 (1999Mu21), 0.24 ps 7 (1979Ki17), 0.28 ps 4 (1979Pi05), 0.37 ps 7, 0.28 ps 7 (1989Ad01) and 0.194 ps 21 (1990Co21).		
5492.0 [°] 6	11 ⁺ @				
6253.5 ^b 7	(12 ⁻)	<0.74 ps	$T_{1/2}$: DSA method (1999Mu21).		
6681.5? ^C 9	(13 ⁺) [@]		E(level): it is assumed that this level is the same As the 6686, 13^+ In 1998Do09 deexciting by 1192.9 γ .		
6685.7 ^a 10	13-	0.22 ps 10	$T_{1/2}$: weighted average of 0.44 ps 14 (DSA method 1979Ki17), 0.17 ps 7 (1989Ad01).		
6733.6 ^{&} 13	14+	0.135 ps <i>14</i>	T _{1/2} : DSA method. Weighted average of 0.097 ps 21 (1999Lo17), 0.21 ps 6 (1979Ki17), 0.24 ps 10 (1979Pi05), 0.21 ps 4 (1976Ha10), 0.15 ps 6, 0.21 ps 7 (1989Ad01) and 0.132 ps 14 (1990Co21).		
7451.9 <mark>b</mark> 10	(14 ⁻)				
7976.8? ^a 14	(15 ⁻)				
8114.1 ^{&} 17	16+	0.075 ps 15	$T_{1/2}$: DSA method. Weighted average of 0.062 ps <i>14</i> (1999Lo17), 0.09 ps 5 (1979Ki17), 0.15 ps 4 and 0.10 ps 4 (1976Ha10).		
9677.9 ^{&} 22	(18 ⁺)	0.076 ps 21	$T_{1/2}$: from DSA method (2001Pa53). Other: ≤ 0.13 ps (DSA method, 1999Lo17).		
11357 ^{&} 3	(20^{+})				

[†] From 1990Co21 based on $\gamma\gamma(\theta)$ (DCO) data and band assignments, unless stated otherwise. The assignments are the same in 'Adopted Levels', except that some are given without parentheses there.

[±] From least-squares fit to $E\gamma'$ s. The 13118, (22⁺) and 14919, (24⁺) proposed by 1990Co21 are omitted here. The transitions are placed elsewhere by 1998Do09. See ${}^{65}Cu({}^{12}C,p2n\gamma)$ dataset for details.

[#] Measurements by recoil-distance Doppler shift method, unless noted otherwise.

[@] From 1998Do09, in 1990Co21 it was proposed as one unit higher.

& Band(A): g.s. band.

^{*a*} Band(B): octupole band, $\alpha = 1$.

^b Band(b): octupole band, $\alpha = 0$.

^c Band(C): 3^+ band.

⁵⁸Ni(¹⁹F,3pγ) **1990Co21** (continued)

 $\gamma(^{74}\text{Se})$

R(DCO) for 4° and 90° .

E_{γ}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.‡	Comments
493.0.2	515	2842.18	5-	2349 13	3-	E2	R(DCO)=1 11 7
539.9 2	2.7.3	3382.12	(6^{-})	2842.18	5-	D	R(DCO) = 0.34/19
551.1.2	1.6.3	3382.12	(6^{-})	2830.92	(4^{-})	E2	R(DCO) = 1, 1, 3
611.6 2	2.6.3	2842.18	5-	2231.04	6+	D	$R(DCO)=0.58\ 20.$
615.3.2	18.2	1884.02	3+	1268.81	2+	2	R(DCO) = 1.17.9
634.6.4	100.5	1268.81	2+	634.90	2+		
634.8.2	210 10	634 90	2+	0.0	$\bar{0}^{+}$	E2	$A_{2}=+0.29$ $A_{4}=-0.07$ In ($\alpha 2n\gamma$) (1970I i11)
05 110 2	210 10	051.90	-	0.0	0	22	R(DCO)=1.14.8
673 4 3	836	3515.6	7-	2842-18	5-	F2	R(DCO)=0.97.12
682.2.4	0.9.2	4197 7	(8^{-})	3515.6	7-	112	R(DCO)=0.97 12.
720.8.2	233	3382 12	(6^{-})	2661.53	, 5+	D	B(DCO) = 0.68.22
728.4.2	100.5	1363 10	(0) 4 ⁺	63/ 00	2+	E2	R(DCO) = 0.00222. R(DCO) = 1.12.0
720.42	100 5	1505.10	7	054.90	2	62	$\alpha(K) \exp(-0.0006 \ 2 \ (1071) Wy7X)$
							$A_{r} = +0.32$ $A_{r} = -0.08$ In ($\alpha/2n\alpha$) (1070L i11)
72162	655	2012 10	5-	2107.60	4+	D	$A_2 = +0.52, A_4 = -0.06 \text{ III } (a, 2117) (1970L111).$ B(DCO) = 0.28, 12
734.0 2	0.5 5	2642.10	5+	100/.00	4 2+	D E2	$R(DCO) = 0.36 \ IS.$
91569	4.54	4107.7	(9^{-})	1004.02	(6^{-})	E2 (E2)	R(DCO) = 0.95 IJ.
813.0 Z	5.2 4 17 1	4197.7	(8)	1060 01	(0)	(E2) E2	$R(DCO)=0.90 \ 21.$
838.9 2	1/1	2107.60	4 · 7+	1208.81	Z · =+	EZ	$R(DCO) = 1.14 \ 10.$
863.7 3	4.2 4	3524.7	/ · (+	2001.53	5 · 4+	(E2)	$R(DCO) = 0.08 \ Io.$
868.2 3	30 2	2231.04	0	1363.10	4'	E2	R(DCO)=1.02 II.
							α (K)exp=0.00061 2 (19/1 WyZX).
070 7 3	17.2	2006.2	(c+)	0107 (0	4+		$A_2 = +0.33$, $A_4 = -0.09$ In (α , $2n\gamma$) (1970L111).
8/8./ 3	1./ 3	2986.3	(6')	2107.60	4'		R(DCO)=0.6 3.
887.14	5.6.5	4402.7	9	3515.6	7	(E2)	R(DCO)=0.89 15.
924.5 4	2.9.3	4449.2	9'	3524.7	7	(E2)	R(DCO)=0.83 18.
966.8 5	18 1	3197.8	8'	2231.04	6'	E2	R(DCO)=1.17.9.
							α (K)exp=0.00050 3 (19/1WyZX).
							$A_2 = +0.34, A_4 = -0.09 \ln (\alpha, 2n\gamma) (1970L111).$
986.4 2	2.2.3	2349.13	3-	1363.10	4+	D	R(DCO)=0.37 23.
1011.0 4	1.9 3	5208.7	(10^{-})	4197.7	(8 ⁻)	(E2)	$R(DCO)=1.1 \ 3.$
1042.8 5	1.4 2	5492.0	11+	4449.2	9+		
1044.8 5	1.1 2	6253.5	(12^{-})	5208.7	(10^{-})	(E2)	R(DCO)=0.9 3.
1057.4 6	12 1	4255.2	10+	3197.8	8+	E2	R(DCO)=1.03 14.
1080.4 2	3.4 4	2349.13	3-	1268.81	2+	D	R(DCO)=0.56 20.
1087.8 5	4.4 4	5490.5	11-	4402.7	9-	E2	R(DCO)=1.20 15.
1151.0 2	1.7 3	3382.12	(6^{-})	2231.04	6+	(D)	Mult.: $\Delta J=0$, dipole transition.
							R(DCO)=1.2 3.
1186.6 7	8.3 6	5441.8	12+	4255.2	10+	E2	R(DCO)=1.08 12.
1189.5 7	1.4 2	6681.5?	(13^{+})	5492.0	11^{+}		E_{γ} : possibly corresponds to 1192.9 6 γ In 1998Do09.
1195.2 7	3.1 4	6685.7	13-	5490.5	11-	E2	R(DCO)=1.47 22.
1198.3 7	1.0 2	7451.9	(14^{-})	6253.5	(12^{-})		
1236.9 [#] 5	0.4 2	5492.0	11^{+}	4255.2	10^{+}		
1249.2 2	15 <i>I</i>	1884.02	3+	634.90	2^{+}		R(DCO)=1.39 11.
1251.4 4	0.9 2	4449.2	9+	3197.8	8+		
1268.9 2	15 <i>I</i>	1268.81	2+	0.0	0^{+}	E2	R(DCO)=1.09 11.
	-						$I_{\gamma}(634\gamma)/I_{\gamma}(1269\gamma)=100 5/15 1 (1990Co21)$ is in
							disagreement with values from 1979Pi05 and 1989Ad01.
1284.5 <i>3</i>	1.5 2	3515.6	7-	2231.04	6+		
1201 1# 0	002	7076 89	(15^{-})	6685 7	13-		
1291.1 9	565	6733.6	14+	5//1 Q	12+	F2	$R(DCO) = 1.70 I_{5}$
1291.0 9	173	3524 7	7+	2231 04	6 ⁺	154	R(DCO) = 1.17 IJ.
14/0.000	1.7 5	JJ2-T.1	1	4431.04	0		

⁵⁸ Ni(¹⁹ F,3pγ) 1990Co21 (continued)								
γ (⁷⁴ Se) (continued)								
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	Comments		
1298.7 2	2.4 3	2661.53	5+	1363.10 4+				
1380.5 11	3.2 4	8114.1	16^{+}	6733.6 14+	E2	R(DCO)=1.02 21.		
1467.7 2	4.5 4	2830.92	(4 ⁻)	1363.10 4+	(D)	Mult.: $\Delta J=0$, dipole transition. R(DCO)=0.92 15.		
1472.6 2	3.9 4	2107.60	4^{+}	634.90 2+				
1478.6 2	2.8 3	2842.18	5-	1363.10 4+	D	R(DCO)=0.43 18.		
1563.8 <i>13</i>	1.1 2	9677.9	(18^{+})	8114.1 16 ⁺				
1678.6 <i>15</i>	1.1 2	11357	(20^{+})	9677.9 (18 ⁺)				
1713.7 2	4.4 4	2349.13	3-	634.90 2+	D	R(DCO)=0.44 15.		
^x 1761.7 [†] <i>17</i>	1.0 2							
^x 1800.6 [†] 19	0.8 2							

[†] In 1998Do09, 1761.7 is placed from a 7206, (14⁺) level and and 1800.6 from 8536, (16⁺) level. The 22⁺ to 20⁺ transition in the g.s. band is 1842 in 1998Do09. See 65 Cu(12 C,p2n γ) dataset for details.

[‡] DCO ratio of ≈ 1 indicates $\Delta J=2$, Q (most likely E2) transition and $\approx 0.5 \Delta J=1$, dipole or D+Q transition. The E2 assignment is from DCO ratio and application of RUL when level lifetimes are known.

[#] Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

 $^{74}_{34}{
m Se}_{40}$

⁵⁸Ni(¹⁹F,3pγ) 1990Co21

 $^{74}_{34}{
m Se}_{40}$