Coulomb excitation 2014Ma85

	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	ENSDF	31-Mar-2017

2014Ma85: ⁷⁴Ni beam at 95.8 MeV/nucleon produced in fragmentation of 140 MeV/nucleon ⁸⁶Kr beam with a 399 mg/cm² thick ⁹Be target at Coupled cyclotron facility at NSCL-MSU, followed by A1900 fragment separator and S-800 magnetic spectrograph for identification of fragments by energy loss and time-of-flight technique.

Coulomb excitation target=642 mg/cm² thick ¹⁹⁷Au.

Measured Doppler-corrected γ -ray spectra correlated with incoming and outgoing particles, with the selection of scattering angle consistent with safe Coulomb excitation. The CAESAR array of 192 CsI(Na) scintillators was used for γ detection. Deduced B(E2) for the first 2⁺ state, and compared to large-scale shell model calculations, and results for first 2⁺ states in N=40-50 even-A Ni isotopes.

⁷⁴Ni Levels

E(level)	J^{π}	T _{1/2}]	Comments	
0 1024 <i>I</i>	0^+ 2 ⁺ 3.9 ps +21-1 0		21-1	$\begin{array}{l} B(E2)\uparrow=0.064 +22-23 \ (2014Ma85)\\ B(E2) \ deduced \ by \ 2014Ma85 \ from measured angle-integrated cross section for 0^+ to 2^+ excitation=148 \ mb +50-52, \ and \ using \ DWEIKO \ computer \ code \ to \ translate \ this \ cross \ section \ into \ B(E2) \ value. \ 2014Ma85 \ quote \ B(E2) \ in \ e^2 fm^4 \ units, \ whereas \ here \ it \ is \ listed \ in \ e^2 b^2 \ units \ as \ in \ ENSDF \ database. \ T_{1/2}: \ deduced \ by \ evaluator \ from \ B(E2) \ value \ in \ 2014Ma85. \ \underline{\gamma(^{74}Ni)}$	
Eγ	E_i (level)	J_i^{π}	$\frac{\mathbf{E}_f}{\mathbf{Q}_f} = \frac{\mathbf{J}_f^{\pi}}{\mathbf{Q}_f^{\pi}}$	Comments	

Level Scheme

⁷⁴₂₈Ni₄₆