Adopted Levels, Gammas

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh	ENSDF	31-Mar-2017			

 $Q(\beta^{-})=7550 SY; S(n)=6420 SY; S(p)=18330 SY; Q(\alpha)=-14370 SY$ 2017Wa10

 $S(2n)=10370\ 200,\ S(2p)=34600\ 540,\ Q(\beta^-n)=2460\ 200\ (syst,2017Wa10).$

- ⁷⁴Ni identified by 1987Ar21 and 1990Be13 in ²³⁵U(n,F) reaction at E=thermal reaction. 1998Am04 used ⁹Be(⁸⁶Kr,X) at 500 MeV/nucleon to produce ⁷⁴Ni and measured half-life. 1998Fr15 (also 2002Kr13, 2001Fr21, 2000Mu10, 1998FrZY): ²³⁸U(p,F) at 30 MeV to measure half-life and yield of ⁷⁴Ni.
- 2014Xu07: ⁷⁴Ni nuclide produced in ⁹Be(²³⁸U,F) reaction with a ²³⁸U⁸⁶⁺ beam of 345 MeV/nucleon produced by the RIKEN accelerator complex. Identification of ⁷⁴Ni nuclei was made on the basis of magnetic rigidity, time-of-flight and energy loss of the fragments (Δ E-B ρ -tof method) using BigRIPS fragment separator and ZeroDegree Spectrometer (ZDS) at RIBF-RIKEN facility. Based on A/Q spectrum and Z versus A/Q plot. Measured heavy fragment, β and γ spectra using wide-range active silicon strip stopper array (WAS3ABi) for beta and ion detection, and EUROBALL-RIKEN Cluster array for γ detection. Decay curves were obtained from time differences between implantation and correlated β decays.

2011Es06: mass measurements using time-of-flight at NSCL-MSU, mass excess for ⁷⁴Ni=-49210 keV 990.

1999Le68 searched for microsecond isomers in ⁷⁴Ni using Ni(86 Kr,X) reaction at E=60.3 MeV/nucleon, but proved negative; no isomers were found between 50 ns to 100 μ s.

Additional information 1.

Nuclear structure (Theory): 2014Ts02, 2012Sr03, 2006An27: levels, J^{π} , B(E2).

⁷⁴Ni Levels

Cross Reference (XREF) Flags

A	⁷⁴ Co	β^{-}	decay	(31.3	ms)
---	------------------	-------------	-------	-------	-----

- **B** ${}^{1}\text{H}({}^{74}\text{Ni},\text{P'}\gamma)$
- C Coulomb excitation

E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments			
0	0+	507.7 ms 46	ABC	$%β^-=100; %β^-n=?$ Theoretical T _{1/2} =1.2 s, %β ⁻ n=2.3 (2003Mo09). Theoretical T _{1/2} =5.5 s, %β ⁻ n=1.0 (2016Ma12). T _{1/2} : from β(implant) correlations (2014Xu07, see detailed analysis of the decay curve on Figs. A.66, 67, 68 and Tables A.39, 40, pages 191-193 of 2014XuZZ thesis). Others: 0.9 s 2 (1998Fr15,2001Fr21); 0.54 s <i>16</i> (1998Am04); 1.1 s 5 (1990Be13). Weighted average of all the four values is 508.0 ms <i>61</i> , however, the most precise value from 2014Xu07 is preferred. Additional information 2.			
1024 <i>1</i>	2+	3.9 ps +21-10	ABC	 In βγ and γγ studies of ⁷⁴Ni decay, 1998Fr15 reported two most intense γ rays at 166.1 <i>I</i> and 694.3 2, forming a cascade. These γ rays feed levels either in ⁷⁴Cu through β⁻ decay or in ⁷³Cu through β⁻n decay. The latter possibility, however, seems less likely (1998Fr15) since the γ-ray intensities imply %β⁻n=30, much higher than the theoretical value of 2.3% (2003Mo09). B(E2)↑=0.064 +22-23 (2014Ma85) J^π: Coulomb excited state. T_{1/2}: deduced by evaluator from B(E2) value in 2014Ma85. 			
1763? 1	(4 ⁺)		AB	E(level): from β^- decay. Other: 1806 30 in 1 H(74 Ni,p' γ).			

Estimated $\Delta Q(\beta^-) = \Delta S(n) = 200$, $\Delta S(p) = \Delta Q(\alpha) = 450$ (2017Wa10).

Adopted Levels, Gammas (continued)

$\gamma(^{74}\text{Ni})$

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult.	Comments
1024	2+	1024 <i>1</i>	100	0	0^+	[E2]	B(E2)(W.u.)=6.9 25
1763?	(4^{+})	739 [†] 1	100	1024	2+		E_{γ} : from β^- decay. Other: 786 30 in ¹ H(⁷⁴ Ni,p'\gamma).

 † Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

Level Scheme

 $- - - - - \rightarrow \gamma$ Decay (Uncertain)

