⁷⁴Ga IT decay (9.5 s) 1974Va08,1977Va01,1978Ta08

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh ENSDF 31-Mar-2017

Parent: 74 Ga: E=59.7 2; $J^{\pi}=(0^+)$; $T_{1/2}=9.5$ s 10; %IT decay=75 25

All studies are by the same group.

Isomeric activity produced by 74 Ge(n,p) reaction using 14-MeV neutrons (1974Va08). Authors report γ -ray, x-ray, β^- , $\beta\gamma$, $\gamma\gamma$, and sum peak measurements.

1977Va01 use delayed coincidence summing technique (1978Ta08) to measure T_{1/2} of 56.5 level. A single activated germanium detector was used.

⁷⁴Ga Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	(3^{-})	·	
56.5 1	(2^{-})	31 ns 5	$T_{1/2}$: from $\gamma\gamma(t)$ (1977Va01,1978Ta08).
59.7 2	(0^{+})	9.5 s <i>10</i>	E(level): from sum peak observed at 59.7 keV (1974Va08).
			$T_{1/2}$: from 1974Va08.

[†] From Adopted Levels.

γ (74Ga)

 $I(\gamma+ce)$ normalization: No β^- branch observed (1974Va08). An upper limit is suggested as 50% (1974Va08). No K x-rays observed with $T_{1/2}{\approx}10$ s.

From an attempt to observe β radiations from the isomer, 1974Va08 estimate $I(\beta^-)$ <50%.

No $\beta\gamma$ and $\gamma\gamma$ coincidences observed with 56.5 γ (1974Va08).

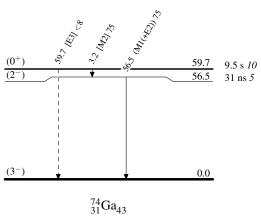
Sum peak at 59.7 observed in γ -ray spectrum from an activated germanium detector.

E_{γ}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	$I_{(\gamma+ce)}^{\ddagger}$	Comments
(3.2 2) 33	×10 ⁻⁴	59.7	(0+)	56.5 (2-)	[M2]		2.9×10 ⁵ 11	100	E_{γ} : from difference of 59.7 2 (sum peak) and 56.5 γ (1974Va08) γ not observed directly.
56.5 1		56.5	(2-)	0.0 (3-)	(M1(+E2))	<0.17	0.42 8	100	Mult., δ : from $\alpha(K)\exp \le 0.43$ (1974Va08). The value of $\alpha(K)\exp$ allows also E1(+M2) with $\delta < 0.16$. Also no K x-rays decaying with $T_{1/2}=10$ s observed (1974Va08).
59.7#		59.7	(0+)	0.0 (3 ⁻)	[E3]		71 6	<10	ce(K)/(γ +ce)=0.72 3; ce(L)/(γ +ce)=0.20 3 $I_{(\gamma+ce)}$: from $I_{\gamma}(59.7\gamma)<0.04(I_{\gamma}(56.5\gamma))$ (1974Va08). This γ has not been observed; but sum peak observed by 1974Va08.

[†] Theoretical values from BrIcc code (2008Ki07) with Frozen-orbital approximation.

[‡] For absolute intensity per 100 decays, multiply by 0.75 25.

[#] Placement of transition in the level scheme is uncertain.


⁷⁴Ga IT decay (9.5 s) 1974Va08,1977Va01,1978Ta08

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays %IT=75 25

---- → γ Decay (Uncertain)

Legend

