Adopted Levels

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	ENSDF	31-Mar-2017					

 $Q(\beta^{-})=9751$ 7; S(n)=5090 6; S(p)=13187 7; $Q(\alpha)=-11800$ SY 2017Wa10

Estimated $\Delta Q(\alpha) = 300$ (2017Wa10).

 $S(2n)=12366\ 6,\ S(2p)=30390\ 400\ (syst),\ Q(\beta^{-}n)=1516\ 6\ (2017Wa10).$

⁷⁴Cu identified by thermal neutron fission of ²³⁵U: 1987Ar21, 1987LuZX, 1989Wi11, 1990Be13, 1991Kr15, 1992CzZY.
1997Hu09, 2002Kr10, 2002Kr13: ⁷⁴Cu produced in ²³⁸U(p,F) E=30 MeV. Measured yields.

1987LuZX: measured $T_{1/2}$.

1991Kr15: measured $T_{1/2}$ and neutron-emission probabilities.

1999GrZQ: search for microsecond isomers in Ni(86Kr,X) reaction.

2010Fl02, 2010Vi07: measurement of spin, static magnetic and quadrupole moments by collinear laser spectroscopy at the CERN-ISOLDE facility. ⁷⁴Cu produced in bombardment of uranium carbide target with 1.4 GeV protons. Resonant ionization laser ion source (RILIS) was used to resonantly laser ionize the Cu atoms. The ions were accelerated to 30 keV and mass separated by HRS and injected into radiofrequency quadrupolar (RFQ) gas-filled Paul trap (ISCOOL). Measured hyperfine structure for the ground state from resonance fluorescence spectra; deduced spin, magnetic dipole moment and electric quadrupole moment. The data were normalized to values of hyperfine structure constants, and moments for ⁶⁵Cu. Comparison with shell-model calculations.

2016Bi08: ⁷⁴Cu isotope was produced by bombarding UC_x target with 1.4 GeV proton beam at the CERN-ISOLDE facility. Cu isotopes were selectively ionized by the RILIS laser ion source, accelerated to 30 keV, mass separated with the high-resolution mass separator, and injected into the gas-filled linear Paul trap. Measured isotope shift with respect to 65 Cu using the collinear laser spectroscopy setup. Studied systematics of isotope shifts on $^{58-75}$ Cu isotopes. Compared with droplet model predictions.

No excited states are known from ⁷⁴Ni β^- decay. In the fragmentation of ⁸⁶Kr beam with a Ni target, 1999GrZQ claimed to have observed short-lived isomer(s) in ⁷⁴Cu, but no details are available as to the excitation energies.

⁷⁵Ni decays by β^- n to ⁷⁴Cu with $\%\beta^-$ n=10.0 28 (2010Ho12). Other $\%\beta^-$ n=1.6 (1985Re01). No details of the level population from this decay are available.

In $\beta\gamma$ and $\gamma\gamma$ studies of ⁷⁴Cu decay, 1998Fr15 reported two most intense γ rays at 166.1 *1* and 694.3 2, forming a cascade. These γ rays feed levels either in ⁷⁴Cu through ⁷⁴Ni β^- decay or in ⁷³Cu through ⁷⁴Ni β^- n decay. The latter possibility, however, seems less likely (1998Fr15) since the γ -ray intensities imply $\%\beta^-$ n=30, much higher than the theoretical value of 2.3% (2003Mo09).

Mass measurements: 2005Gu36, 2007Gu09. Additional information 1.

⁷⁴Cu Levels

Cross Reference (XREF) Flags

 74 Ni β^{-} decay (507.7 ms)

E(level)	J^{π}	T _{1/2}	XREF	Comments		
0.0	2-	1.63 s 5	Α	$\%\beta^-=100; \%\beta^-n>0$ $\mu=-1.068 \ 3 \ (2010Fl02,2010Vi07,2014StZZ)$ $Q=+0.27 \ 3 \ (2010Fl02,2010Vi07,2016St14)$ $\delta < r^2 > (^{65}Cu,^{74}Cu)=0.505 \ fm^2 \ 18(stat) \ 72(syst) \ (2016Bi08)$. The systematic uncertainty for isotope shift resulted from uncertainties in the atomic factors. $\%\beta^-n: \ 1991Kr15 \ claim to have observed delayed neutrons from \ ^{74}Cu \ decay, but \ \%\beta^-n \ is not determined in this work.$ $J^{\pi}: \ from \ collinear \ laser \ spectroscopy \ (2010Fl02); \ parity \ from \ comparison \ of \ measured \ \mu \ and \ Q \ moments \ with \ shell-model \ model \ predictions. \ Calculated \ magnetic \ moment \ is \ positive \ for \ all \ the \ calculated \ 2^+ \ states \ up \ to \ about \ 800 \ keV \ in \ these \ model \ predictions. \ Best \ agreement \ of \ experimental \ \mu \ and \ Q \ with \ calculated \ moments \ is \ obtained \ for \ a \ predicted \ 2^- \ state \ at \ 208 \ keV \ using \ jj44b \ interaction \ and \ for \ a \ predicted \ 2^- \ state \ at \ 44 \ keV \ using \ JUN45 \ interaction. \ Dominant \ configuration=\pi f_{5/2} \otimes v g_{9/2}.$		

Continued on next page (footnotes at end of table)

Adopted Levels (continued)

⁷⁴Cu Levels (continued)

E(level)	J^{π}	$T_{1/2}$	XREF
----------	-----------	-----------	------

Comments

 $T_{1/2}$: weighted average of 1.75 s 6 (2005Va19, timing of γ rays), 1.594 s 10 (1991Kr15, timing of delayed neutrons), 1.59 s 5 (1989Wi11, timing of γ rays). Uncertainty of 0.010 s given by 1991Kr15 increased by a factor of 5 in the averaging procedure. Others: 1.51 s 27 (1990Be13), 1.60 s 15 (1987LuZX).

 μ ,Q: from hyperfine structure measurements using collinear laser spectroscopy (2010Fl02,2010Vi07). Value of Q=+0.26 3 in 2010Fl02 is re-evaluated to +0.27 3 by 2016St14.