Adopted Levels

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh	ENSDF	31-Mar-2017	

 $Q(\beta^{-})=15640 SY; S(n)=3470 SY; S(p)=17210 SY; Q(\alpha)=-15750 SY$ 2017Wa10

- 1997Be70, 1995En07: ⁷⁴Co identified in ⁹Be(²³⁸U,F), E=750 MeV/nucleon reaction; fully-stripped fission products separated using Fragment-Recoil Separator (FRS). Measured magnetic rigidity, trajectory, energy deposit, time-of-flight, production cross section and residuals fission yields.
- 2005Ma59 (also 2005Ma95): ⁷⁴Co produced by fragmentation of ⁸⁶Kr beam at 140 MeV/nucleon in a ⁹Be target, followed by analysis of reaction products using A1900 spectrometer. Measured γ , β , γ (implanted ion) coin.
- 2010Ho12: ${}^{9}\text{Be}({}^{86}\text{Kr},X) = 140 \text{ MeV/nucleon; fully-ionized }{}^{86}\text{Kr}$ beam, A1900 fragment separator at NSCL facility using $B\rho-\Delta E$ - $B\rho$ method. After separation, the mixed beam was implanted into the NSCL β -counting system (BCS) consisting of stacks of Si PIN detectors, a double-sided Si strip detector (DSSD) for implantation of ions, and six single-sided Si strip detectors (SSSD) followed by two Si PIN diodes. The identification of each implanted event was made from energy loss, time-of-flight information and magnetic rigidity. The implantation detector measured time and position of ion implantations and β decays. Neutrons were detected with NERO detector. Measured β and β n-correlated events with ion implants; half-life of ⁷⁴Co and delayed-neutron emission probability from a total of 331 implants, and 16 correlated β n coincidences.
- 2011Da08: ⁷⁴Co produced in the fragmentation of 57.8 MeV/nucleon ⁸⁶Kr beam impinged on 50 mg/cm² thick tantalum target using LISE-2000 spectrometer at GANIL facility. Detector system included a three-element Si-detector telescope containing a double-sided silicon-strip detector (DSSSD) backed by a Si(Li) detector and surrounded by four clover type EXOGAM Ge detectors. Product identified by mass, atomic number, charge, energy loss and time of flight. Measured half-life of ⁷⁴Co decay. See also 2002MaZN thesis reporting some of the same results.
- 2014Xu07: ⁷⁴Co nuclide produced in ⁹Be(²³⁸U,F) reaction with a ²³⁸U⁸⁶⁺ beam of 345 MeV/nucleon produced by the RIKEN accelerator complex. Identification of ⁷⁴Co nuclei was made on the basis of magnetic rigidity, time-of-flight and energy loss of the fragments (ΔE -B ρ -tof method) using BigRIPS fragment separator and ZeroDegree Spectrometer (ZDS) at RIBF-RIKEN facility. Based on A/Q spectrum and Z versus A/Q plot. Measured heavy fragment, β and γ spectra using wide-range active silicon strip stopper array (WAS3ABi) for beta and ion detection, and EUROBALL-RIKEN Cluster array for γ detection. Decay curves were obtained from time differences between implantation and correlated β decays. Also 2014XuZZ thesis by the first author of 2014Xu07.

Additional information 1.

⁷⁴Co Levels

E(level)	T _{1/2}	Comments	
0.0	31.3 ms 15	$\beta\beta^{-}=100; \ \beta\beta^{-}n=18 \ 15 \ (2010\text{Ho}12); \ \beta\beta^{-}2n=?$	
		Theoretical $T_{1/2}=23$ ms, $\%\beta^-n=6.4$, $\%\beta^-2n=1.5$ (2003Mo09). Theoretical $T_{1/2}=71$ ms, $\%\beta^-n=4.4$, $\%\beta^-2n=1.3$ (2016Ma12).	
		$T_{1/2}$: weighted average of 30 ms 3 (2005Ma59, 2005Ma95, β and βγ correlated with ⁷⁴ Co ions) and 31.6 ms 15 (2014Xu07, β-implants correlated decay curves). Other less precise measurements using	
		β -implant correlated decay curves). Other less precise measurements using β -implant correlated decay curves: 34 ms +6-9 (2010Ho12) and 19 ms 7 (2011Da08,2002MaZN).	
		Weighted average of all the four values is 30.9 ms 15.	
		β^{-} n decay to ⁷³ Ni is indicated by the presence of a 240 γ (belonging to ⁷³ Ni) in $\beta\gamma$ coin spectrum	
		(2005Ma59). From the detailed analysis of β (implant) decay curve, 2010Ho12 deduce $\%\beta$ ⁻ n=18 15.	
		Others: ≥ 26.9 (2005Ma59, from $\beta\gamma$ data and decay scheme analysis), $\beta\beta$ -n=14.11 (2014XuZZ,	
		preliminary value).	

Estimated $\Delta Q(\beta^-)=540$, $\Delta S(n)=640$, $\Delta S(p)=\Delta Q(\alpha)=710$ (2017Wa10).

 $S(2n)=8760\ 640,\ S(2p)=37500\ 780,\ Q(\beta^-n)=9220\ 500\ (syst,2017Wa10).$