History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh, Ameenah R. Farhan	NDS 107, 1923 (2006)	30-Apr-2006				

Parent: ⁷⁴Kr: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=11.50 \text{ min } 11$; Q(ε)=2975 15; $\mathscr{H}\varepsilon+\mathscr{H}\beta^+$ decay=100.0

1975Sc07, 1974Co38, 1974Ro11: Measured E γ , I γ , $\gamma\gamma$, $\gamma\beta$ + coin.

2004Po08 (also 2004Co29,2003Ma69): Measured β strength functions using total absorption gamma spectrometer (TAGS). The level scheme is mainly from 1975Sc07.

Others:

γ's: 1973DaYM.

 $\gamma\beta$ +: 1973HoYM, 1960Bu22, 1960Gr19.

Additional information 1.

⁷⁴Br Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	Jπ‡	E(level) [†]	J ^{π‡}	$E(level)^{\dagger}$	J ^{π‡}
0.0	(0^{-})	179.5 4	(1)	534.7 6	(1)	970.0 4	(1^{+})
9.84 <i>4</i>	(1^{-})	212.86 6	1^{+}	609.11 <i>16</i>	(1^{+})	978.3 8	(1)
72.62 7	(2^{-})	239.32 9	(1)	612.9 7	(1)		
89.62 7	(1^{-})	306.55 6	1^{+}	701.28 17	(1^{+})		
132.6? 2	$(1,2^{-})$	390.06 22	(1)	831.8 6	(1)		

[†] From least-squares fit to $E\gamma's$.

[‡] From 'Adopted Levels'.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\beta^+$ ‡	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger\ddagger}$	Comments
(1997 15)	978.3	0.19 6	0.31 9	5.8	0.50 11	av E β =424 7; ε K=0.541 11; ε L=0.0623 13; ε M+=0.01249 25
(2005 15)	970.0	0.39 12	0.61 18	5.5	1.00 22	av Eβ=428 7; εK=0.535 11; εL=0.0617 13; εM+=0.01235 25
(2143 15)	831.8	0.20 7	0.20 7	6.0	0.40 10	I(ε+β ⁺): 3.4 3 for 970 and 978 levels (2004Po08). av Eβ=489 7; εK=0.442 10; εL=0.0508 12; εM+=0.01018 23
(2274 15)	701.28	1.9 4	1.34 25	5.3	3.2 5	I(ε+β'): 1.1 I (2004Po08). av Eβ=547 7; εK=0.364 9; εL=0.0418 I0; εM+=0.00838 20
(2362 15)	612.9	0.19 7	0.11 4	6.4	0.30 8	I(ε+β ⁺): 5.4 5 (2004Po08). av Eβ=587 7; εK=0.318 8; εL=0.0366 9; εM+=0.00732
(2366 15)	609.11	2.0 5	1.10 24	5.4	3.1 6	av E β =588 7; ε K=0.316 8; ε L=0.0363 9; ε M+=0.00728 17
(2440 15)	534.7	0.61 18	0.29 9	6.0	0.90 21	I(ε+β ⁺): 3.7 3 for 609 and 613 levels (2004Po08). av Eβ=622 7; εK=0.282 7; εL=0.0324 8; εM+=0.00649 15
(2585 15)	390.06	0.34 18	0.12 6	6.4	0.46 19	I(ε+β ⁺): 0.68 6 (2004Po08). av Eβ=687 7; εK=0.227 6; εL=0.0260 6; εM+=0.00521 l_2
(2668 15)	306.55	32 6	9.4 17	4.6	41 7	I(ε+β ⁺): 0.06 1 (2004Po08). av Eβ=725 7; εK=0.200 5; εL=0.0230 6; εM+=0.00460 11
(2736 [#] 15)	239.32	<1.59	< 0.41	>5.9	<2.0	I(ε+β ⁺): 46 4 (2004Po08). av Eβ=756 7; εK=0.181 4; εL=0.0208 5; εM+=0.00417

Continued on next page (footnotes at end of table)

⁷⁴ Kr ε decay (11.50 min)	1975Sc07,1974Co38,1974Ro11 (continued)
--	--

E(decay)	E(level)	Ιβ ⁺ ‡	I ε^{\ddagger}	Log ft	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments
(2762 15)	212.86	25 5	6.1 12	4.8	31 6	$ \frac{10}{I(\varepsilon + \beta^+): 5.8 \ 5 \ (2004Po08).} $ av E β =768 7; ε K=0.175 4; ε L=0.0200 5; ε M+=0.00401 9
(2796 15)	179.5	1.4 6	0.34 14	6.1	1.7 7	I(ε+β ⁺): 20 2 (2004Po08). av Eβ=783 7; εK=0.166 4; εL=0.0191 5; εM+=0.00382 9 I(ε+β ⁺): 0.020 2 (2004Po08).
(2842 [#] 15)	132.6?	0.65 20	0.14 5	6.4	0.79 21	av E β =804 7; ε K=0.156 4; ε L=0.0179 4; ε M+=0.00358 8 I(ε + β ⁺): 0 (2004Po08)
(2885 15)	89.62	10 4	1.9 8	5.3	12 4	av $E\beta$ =824 7; ε K=0.147 3; ε L=0.0168 4; ε M+=0.00337 8 I(ε + β ⁺): 2.4 2 (2004Po08).
(2902 [#] 15)	72.62	<1.67	< 0.326	>6.1	<2.0	av E β =832 7; ε K=0.143 3; ε L=0.0164 4; ε M+=0.00329 7
(2965 [#] 15)	9.84	<8.5	<1.5	>5.5	<10	av E β =861 7; ε K=0.131 3; ε L=0.0151 4; ε M+=0.00302 7

ϵ, β^+ radiations (continued)

[†] From total absorption spectroscopy, 2004Po08 obtain 11.4% 3 $\varepsilon + \beta^+$ feeding to possible levels between 978 and 3000. The feeding to g.s. could not Be obtained In this experiment.

[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

$\gamma(^{74}\mathrm{Br})$

I γ normalization: From I($\beta^+\beta^-$)/I(89.78)=4.69, feeding to g.s., 9.8, and 72.6 levels is negligible. α 's have been included by assuming that the transitions are either dipole or E2. Above 350 keV α 's are negligible.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α^{a}	Comments
9.85 4	14 4	9.84	(1 ⁻)	0.0	(0 ⁻)	[M1]	11.9	
26.40 [‡] 15	0.5 2	239.32	(1)	212.86	1^{+}	[D]	4.5 10	
62.84 10	31 3	72.62	(2^{-})	9.84	(1^{-})	[M1,E2]	2.7 23	$\alpha(K)=2.2$ 19; $\alpha(L)=0.4$ 4; $\alpha(M)=0.06$ 6
67.29 15	4.7 4	306.55	1^{+}	239.32	(1)	[D,E2]	2.1 17	
72.38 20	1.6 [@] 8	72.62	(2 ⁻)	0.0	(0 ⁻)	[E2]	2.93	$\alpha(K)=2.44; \alpha(L)=0.411; \alpha(M)=0.0657$
79.96 20	0.9 2	89.62	(1^{-})	9.84	(1^{-})	[M1,E2]	1.1 9	α (K)=0.9 8; α (L)=0.15 13; α (M)=0.023 20
83.6 [‡] 4	0.4 2	390.06	(1)	306.55	1^{+}	[D,E2]	1.0 8	
89.70 10	100	89.62	(1 ⁻)	0.0	(0 ⁻)	[M1]	0.156	$\alpha(K)=0.137; \alpha(L)=0.015; \alpha(M)=0.00245$
89.7 [‡] 10	3.0 6	179.5	(1)	89.62	(1^{-})	[D,E2]	0.7 6	
93.81 10	10.6 7	306.55	1+	212.86	1+	[M1,E2]	0.6 5	$\alpha(K)=0.5$ 5; $\alpha(L)=0.08$ 7; $\alpha(M)=0.012$ 11
123.36 10	27 3	212.86	1^{+}	89.62	(1^{-})	[E1]	0.045	
^x 129.6 ^{#b} 4	71							
132.6 ^{‡b} 2	2.1 2	132.6?	$(1,2^{-})$	0.0	(0^{-})	[D,E2]	0.18 13	
140.27 10	26 3	212.86	1^{+}	72.62	(2^{-})	[E1]	0.031	
149.72 <i>15</i>	6.9 4	239.32	(1)	89.62	(1^{-})	[D,E2]	0.12 8	
166.84 25	1.2 4	239.32	(1)	72.62	(2 ⁻)	[D,E2]	0.08 5	
179.3 4	1.1 2	179.5	(1)	0.0	(0^{-})	[D]	0.06 4	
202.98 10	58 <i>5</i>	212.86	1+	9.84	(1^{-})	[E1]	0.011	
210.0 [‡] 6	0.30 15	390.06	(1)	179.5	(1)	[D,E2]	0.04 2	
212.75 20	3.1 3	212.86	1^{+}	0.0	(0^{-})	[E1]	0.009	
216.90 15	26 [@] 7	306.55	1^{+}	89.62	(1 ⁻)	[E1]	0.01	
^x 225.1 [‡] 5	0.9 2							
229.7 5	1.5 [@] 7	239.32	(1)	9.84	(1 ⁻)	[D,E2]	0.028 14	

		⁷⁴ K	Krεdeca	ay (11.50	min)	1975Sc	07,1974Co38,197	' <mark>4Ro11</mark> (c
						γ ⁽⁷⁴ Br) (c	ontinued)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult.	α^{a}	
233.88 10	14 2	306.55	1^{+}	72.62	(2^{-})	[E1]	0.012	
239.4 6	1.4 [@] 9	239.32	(1)	0.0	(0^{-})	[D]	0.024 12	
296.67 10	32 <i>3</i>	306.55	1+	9.84	(1-)	[E1]	0.007	
300.4 3	2.8 4	390.06	(1)	89.62	(1^{-})	[D,E2]	0.011 5	
306.51 10	30 3	306.55	1^{+} (1 ⁺)	0.0	(0^{-})		0.007	
310.9 J	2.5 4	600 11	(1^+)	220.22	(1)	[D,E2]	0.010 4	
309.777	1.0 2	612.0	(1)	239.32	(1)			
396.0.3	2.6.3	609 11	(1) (1^+)	239.32	(1) 1^+			
$444 8^{\ddagger} 10$	163	534.7	(1)	89.62	(1^{-})			
488 9 [‡] 10	0.8.2	701.28	(1)	212.86	1+			
519.8 5	1.9 4	609.11	(1^+)	89.62	(1^{-})			
524.4 [‡] 12	0.25 15	534.7	(1)	9.84	(1^{-})			
^x 530.5 [‡] 8	0.6 2		. ,					
535.3 10	1.1 3	534.7	(1)	0.0	(0 ⁻)			
536.0 10	1.1 3	609.11	(1^{+})	72.62	(2^{-})			
^x 606.5 [‡] 8	0.8 2							
609.2 2	3.4 4	609.11	(1^{+})	0.0	(0^{-})			
611.5+ 10	0.6 2	701.28	(1^{+})	89.62	(1^{-})			
618.9 [‡] 6	0.8 2	831.8	(1)	212.86	1^{+}			
628.8 [‡] 7	0.8 3	701.28	(1^{+})	72.62	(2^{-})			
691.5 [‡] 7	0.9 2	701.28	(1^+)	9.84	(1^{-})			
701.3 2	4.7 4	701.28	(1^{+})	0.0	(0^{-})			
738.8+ 10	0.6 2	978.3	(1)	239.32	(1)			
757.3 4	1.9 3	970.0	(1^{+})	212.86	1^{+}			
765.9 [‡] 15	0.6 2	978.3	(1)	212.86	1^{+}			
^x 797.6 [‡] 13	0.7 2							
831.9 [‡] 20	0.5 2	831.8	(1)	0.0	(0^{-})			
^x 862.0 [‡] 15	0.4 2							
879.5 [‡] 15	0.5 2	970.0	(1^{+})	89.62	(1 ⁻)			
^x 900.0 [‡] 10	0.7 2							
969.0 [‡] 10	0.8 2	970.0	(1^{+})	0.0	(0 ⁻)			
978.1 [‡] 20	0.5 2	978.3	(1)	0.0	(0 ⁻)			
^x 1013.8 [‡] 15	0.7 2							
^x 1060.9 [‡] 15	0.7 2							

⁴ Kr ε decay (11.50 min)	1975Sc07,1974Co38,1974Ro11	(continued)
---	----------------------------	-------------

[†] 1975Sc07 report 57 γ 's whereas 1974Co38 and 1974Ro11 report only 26 intense γ 's. The evaluators have taken weighted averages for γ 's reported in all three references.

[‡] Reported by 1975Sc07 only.

[#] Reported by 1974Ro11 only. Treated here as uncertain.

[@] Large difference between values from 1975Sc07 and 1974Co38. Value given here is unweighted average of the two.

& For absolute intensity per 100 decays, multiply by 0.31 3.

^a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

4

 $^{74}_{35}\mathrm{Br}_{39}$ -4

From ENSDF

 $^{74}_{35}\mathrm{Br}_{39}$ -4