Adopted Levels, Gammas

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh and Jun Chen	NDS 158, 1 (2019)	16-May-2019					

 $O(\beta^{-})=4105.9\ 25;\ S(n)=5519.2\ 28;\ S(p)=13099.4\ 23;\ O(\alpha)=-8040\ 4$ 2017Wa10

S(2n)=14407 3, S(2p)=24765.1 29 (2017Wa10).

⁷³Zn produced and identified by 1972Er05, measured half-life.

2018Ya11: E=1.4 GeV proton beam from ISOLDE-CERN facility. Measured and analyzed hyperfine spectra of ⁷³Zn isotopes. Deduced $T_{1/2}$ and further support for spin assignment for the isomer. Comparison with large-scale shell-model calculations. Systematics of neighboring nuclei.

2008Ba54: measured mass using the ISOLTRAP mass spectrometer.

2017Wr01: measured hyperfine structure, spin, μ , Q of the ground state and isomer using collinear laser spectroscopy using COLLAPS setup at ISOLDE-CERN.

Additional information 1.

⁷³Zn Levels

2018Ya11 have observed no evidence of the existence of a 5.8-s isomer proposed from a β -decay study by 1985Ru05.

A 5.8 s 8 activity was reported by 1985Ru05 in the bombardment of natural tungsten target by ⁸²Se beam at 11.5 MeV/nucleon. In Ey and $\beta\gamma$ coin measurements, 1985Ru05 reported two γ rays at 195.5 and 42.1. The 195.5 γ was proposed as an isomeric transition (E3 multipolarity suggested from α (K)exp=0.24 6, deduced from I(K-x ray)/I γ ratio) from a 195.5 level of 5.8 s half-life. Based on arguments of K-x ray intensity and its observation in $\gamma\beta$ coin data, 42.1 γ was suggested as a transition in ⁷³Ga from β decay of the 5.8-s isomer of 73 Zn. 1998Hu20 did see a 195.5 γ from β - decay of 73 Cu and assigned this γ from a level of the same energy, however, its half-life was measured as 13.0 ms. The 42.1 γ could not have been seen by 1998Hu20 since it was outside their range of detection. From systematics, 1998Hu20 suggested that an expected low-energy $9/2^+$ level may correspond to the 5.8-s isomer with 42.1γ feeding the 195.5 level. This suggestion is, however, inconsistent with the observation of $(42.1\gamma)\beta$ -coin reported by 1985Ru05. 2017Ve05 did not see any evidence for the 24-keV γ ray reported by 1985Ru05, in singles or in β -gated γ spectrum and 910 γ -gated γ spectrum. 2018Ya11 also found no evidence of the existence of a 5.8-s isomer.

Cross Reference (XREF) Flags

A	73 Cu β^{-}	decay	(4.2 s)
---	------------------------	-------	--------	---

- ⁷⁴Cu β ⁻ⁿ decay (1.63 s):? ⁷⁶Ge(¹⁴C,¹⁷O) В

С

E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0	1/2-	24.5 s 2	A C	$%\beta^-=100$ μ=+0.5585 5 (2017Wr01) μ: from measurement of hyperfine structure by collinear laser spectroscopy at ISOLDE-CERN (2017Wr01). See also 2017Ne04 review article. J ^π : 1/2 from measurement of hyperfine structure by collinear laser spectroscopy at ISOLDE-CERN. Parity from agreement of measured μ with theoretical values (2017Wr01).
195.5 2	5/2+	13.0 ms 2	A	 T_{1/2}: weighted average of values extracted from decay curves of 217.4γ, 495.6γ and 910.6γ (2017Ve05). Other: 23.5 s 10 from β-decay curve in 1972Er05. %IT=100 μ=-0.8527 14 (2017Wr01) Q=+0.43 4 (2017Wr01) μ,Q: from measurement of hyperfine structure by collinear laser spectroscopy at ISOLDE-CERN (2017Wr01). See also 2017Ne04 review article. J^π: 5/2 from measurement of hyperfine structure by collinear laser spectroscopy at ISOLDE-CERN. Parity from agreement of measured μ with theoretical values (2017Wr01). J=5/2 is further confirmed by 2018Ya11 in the analysis of the ratio of the

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁷³Zn Levels (continued)

E(level)	J^{π}	XREF	Comments		
			magnetic HFS constants for atomic states, in comparisons with those of neighboring Zn isotopes.		
			$T_{1/2}$: from γ(t) in ⁷³ Cu β ⁻ decay (1998Hu20). Others: 13.1 ms 18 (2017Ve05), ≈10 ms (2018Ya11).		
307.2 2	(1/2,3/2,5/2 ⁻)	A C	XREF: C(280). J^{π} : γ to $1/2^{-}$.		
449.6 2	$(3/2^{-})$	Α	J^{π} : possible allowed β feeding from $3/2^-$; systematics.		
502.2 2	$(1/2, 3/2, 5/2^{-})$	AC	J^{π} : γ to $1/2^{-}$.		
1124.0 3	$(1/2, 3/2, 5/2)^{\dagger}$	AC			
2008.9 <i>3</i>	(1/2,3/2,5/2) [†]	A			
† Possib	ble β^- feeding from	om 3/2 ⁻ .			
			γ ⁽⁷³ Zn)		

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Iγ	\mathbf{E}_{f}	J_f^π	Mult.	α^{\ddagger}	Comments
195.5	5/2+	195.5 2	100	0.0	$1/2^{-}$	[M2]	0.065	B(M2)(W.u.)=0.000449 7
307.2	$(1/2, 3/2, 5/2^{-})$	307.2 2	100	0.0	$1/2^{-}$			
449.6	$(3/2^{-})$	449.6 2	100	0.0	$1/2^{-}$			
502.2	$(1/2, 3/2, 5/2^{-})$	502.2 2	100	0.0	$1/2^{-}$			
1124.0	(1/2, 3/2, 5/2)	674.4 2	100	449.6	$(3/2^{-})$			
2008.9	(1/2,3/2,5/2)	1559.3 2	100	449.6	$(3/2^{-})$			

[†] From ⁷³Cu β^- decay.

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{73}_{30}$ Zn₄₃