Adopted Levels, Gammas

	History							
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh and Jun Chen	NDS 158, 1 (2019)	16-May-2019					
$Q(\beta^{-})=8879 \ 3; \ S(n)=3953 \ 3; \ S(p)=17200$ Estimated uncertainty=400 for $S(p)$ and Q	$SY; Q(\alpha) = -13500 SY$ 2017 (α) (2017Wa10).	7Wa10						
S(2n)=10845 3, $S(2n)=33260$ 400(syst), O	$(\beta^{-}n) = 1603.5 \ 28 \ (2017Wa10)$	L.						
1990Be13: ⁷³ Ni produced and identified in spectrometer and identification with a were implanted.	h^{235} U(n,F) and h^{239} Pu(n,F) E= Δ E-E ionization chamber, and	thermal followed by s β detection with plana	eparation of fragments in a recoil ar Si detectors in which ⁷³ Ni fragmen					
1998Am04: ⁷³ Ni produced in the fragmen	tation of ⁸⁶ Kr beam, followed	by fragment mass sep	aration.					
2001Fr21, 2000Mu10, 1998Fr15, 1997Wol isotopic separation technique.	06: ⁷³ Ni produced in ²³⁸ U(p,F	F) $E=30$ MeV. Measure	ed isotope yields by laser-ionization					
2007Ra27: precise mass measurement usir	ng JYFLTRAP double Penning	r trap.						
Additional information 1. 2005Gr29: analyzed data; deduced levels, 2002Gr16: analyzed levels, J^{π} , B(E2).	J^{π} , configurations.	/ 1						
	⁷³ Ni I	Levels						
	Cross Reference	e (XREF) Flags						

⁷³Co $β^-$ decay (40.7 ms) ⁷⁴Co $β^-$ n decay (31.3 ms) A

В

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0	(9/2+)	0.84 s <i>3</i>	AB	$\[mm] \[mm] \[m$
239.2 2 524.3 4 1299.0 6	(7/2 ⁺) (5/2 ⁺) (5/2 ⁻)		AB A A	

[†] From Ey data. [‡] From 2012Ra10, based on systematics of level structure in ⁶⁹Ni and ⁷¹Ni, and shell-model predictions, except where noted.

$\gamma(^{73}\text{Ni})$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^π
239.2	$(7/2^+)$	239.2 2	100	0.0	$(9/2^+)$
524.3	$(5/2^+)$	284.8 4	100 25	239.2	$(7/2^+)$
		524.6 5	52 19	0.0	$(9/2^+)$
1299.0	$(5/2^{-})$	774.7 4	100	524.3	$(5/2^+)$

[†] From ⁷³Co β^- decay.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

