History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh and Jun Chen	NDS 158, 1 (2019)	16-May-2019						

2010St05: $E(^{40}Ca)=185$ MeV. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin, (particle) γ coin, $\gamma\gamma(\theta)(DCO)$ using EUROBALL spectrometer consisting of composite cluster and clover detectors. Charged particles were detected using the Italian Silicon Sphere containing 40 silicon ΔE -E telescope detectors. The neutrons were detected with neutron wall NWALL consisting of 50 liquid scintillators. Experiments conducted at XTU tandem accelerator at Legnaro. Comparison with predictions of configuration dependent Cranked Nilsson-Strutinsky calculations.

E(level) [†]	Jπ‡	T _{1/2}	Comments
0.0#	3/2-		
$143.2^{@}$ 7	5/2-		
366.1 8	$(5/2^+)$		
391.7 [#] 8	7/2-		
431.9 ^{&} 12	$9/2^{+}$	107 ns 10	%IT=100
	~1-		$T_{1/2}$: from Adopted Levels.
509.3 ^a 12	$(7/2^+)$		J^{π} : from Adopted Levels.
658.9 [@] 9	9/2-		
1002.8 [#] 10	$11/2^{-}$		
1063.5 ^a 13	$(11/2^+)$		
1175.2 ^{&} 14	$13/2^{+}$		
1371.1 [@] 11	$13/2^{-}$		
1828.3 [#] 12	$15/2^{-}$		
1889.2 ^{<i>a</i>} 14	$(15/2^+)$		
2066.6 ^{&} 16	$17/2^{+}$		
2284.2 [@] 13	$17/2^{-}$		
2861.4 [#] 16	19/2-		
2933.8 ^{<i>a</i>} 16	$(19/2^+)$		
3150.7 ^{&} 18	$21/2^+$		
3381.2 [@] 17	$21/2^{-}$		
3611.6 19			
4084.4 [#] 19	23/2-		
4133.8 ^{<i>a</i>} 18	$(23/2^+)$		
4395.7 ^{&} 20	$25/2^+$		
4644.2 ^{^w} 20	25/2-		
5341.8 ^{tt} 20	$(27/2^{+})$		
5404.4" 21	$27/2^{-}$		
5500.4 ⁰ 21	27/2(-)		
5606.7 [°] 23	29/2+		
6024.2 ^{^w} 22	29/2-		
6196.2 22	o		
6562.4" <i>24</i>	$31/2^{-}$		
6801.7° 25	33/2+		
6995.4 ⁰ 24	$(31/2^{-})$		
7325.3 24	33/2-		
7882 [#] 3	35/2-		
8097 ^{&} 3	$37/2^{+}$		

⁷³Kr Levels

⁴⁰Ca(⁴⁰Ca,α2pnγ) **2010St05** (continued)

⁷³Kr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
8445 ^b 3	$(35/2^{-})$	
8734 [@] 3	37/2-	
9389 [#] 3	39/2-	
9519 ^{&} 3	$41/2^{+}$	
10345 [@] 3	$41/2^{-}$	
11089 [#] 3	43/2-	
11231 ^{&} 3	$45/2^{+}$	
12082 ^(@) 3	45/2-	
12951 [#] 3	$47/2^{-}$	
13361 4	49/2+	
13957 [@] 4	49/2-	
14990 [#] 4	$(51/2^{-})$	
15983 4	$(53/2^+)$	
16131 [@] 4	53/2-	
17288 [#] 4	$(55/2^{-})$	
18751 [@] 4	$(57/2^{-})$	
19149 4	$(57/2^+)$	
19975 [#] 4	(59/2 ⁻)	
21903 [@] 4	$(61/2^{-})$	
22876 ^{&} 4	(61/2+)	Maximum configuration spin state of $\alpha = +1/2$ signature, this band does not show a strong decrease in quadrupole collective behavior.
23165 [#] 4	(63/2 ⁻)	

 † From least-squares fit to Ey data, assuming uncertainty of 1 keV for each y ray.

- [‡] From 2010St05 based on $\gamma\gamma(\theta)$ (DCO) data for selected transitions, interconnecting dipole and quadrupole transitions, and band assignments.
- [#] Band(A): Band based on $3/2^-, \alpha = -1/2$. Proposed configuration= $\nu 3/2[312]$ at low spins, at higher spins this band is crossed by $\pi g_{9/2}^3 \otimes \nu g_{9/2}^3$ configuration.
- [@] Band(a): Band based on $5/2^-, \alpha = +1/2$. Proposed configuration=v3/2[312] at low spins, at higher spins this band is crossed by $\pi g_{9/2}^3 \otimes v g_{9/2}^3$ configuration.
- & Band(B): Band based on $9/2^+$, $\alpha = +1/2$. Proposed configuration = $\pi g_{9/2}^2 \otimes v g_{9/2}^3$. This band does not show a strong decrease in quadrupole collective behavior.
- ^{*a*} Band(b): Band based on $(7/2^+), \alpha = -1/2$. Proposed configuration= $\pi g_{9/2}^2 \otimes v g_{9/2}^3$.

^{*b*} Band(C): Side band.

$\gamma(^{73}\mathrm{Kr})$

DCO ratios for $\Delta J=1$ and $\Delta J=2$ transitions are shown by 2010St05 in their Fig. 3.

E_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	Comments
(66)	431.9	9/2+	366.1	$(5/2^+)$		
143	143.2	$5/2^{-}$	0.0	3/2-		
143	509.3	$(7/2^+)$	366.1	$(5/2^+)$		
223	366.1	$(5/2^+)$	143.2	5/2-	(D)	$\Delta J=0$, dipole or $\Delta J=2$, Q transition from DCO data.

Continued on next page (footnotes at end of table)

$\frac{{}^{40}\text{Ca}({}^{40}\text{Ca},\alpha 2\text{pn}\gamma)}{2010\text{St05}} \text{ (continued)}$

$\gamma(^{73}$ Kr) (continued)

Eγ	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	Comments
248	391.7	$7/2^{-}$	143.2	$5/2^{-}$		
267	658.9	9/2-	391.7	$7/2^{-}$		
344	1002.8	$11/2^{-}$	658.9	9/2-		
366	366.1	$(5/2^+)$	0.0	3/2-		
368	1371.1	13/2-	1002.8	$11/2^{-}$		
392	391.7	$7/2^{-}$	0.0	$3/2^{-}$		
456	2284.2	$17/2^{-}$	1828.3	$15/2^{-}$		
457	1828.3	$15/2^{-}$	1371.1	$13/2^{-}$		
516	658.9	$9/2^{-}$	143.2	$5/2^{-}$		
554	1063.5	$(11/2^+)$	509.3	$(7/2^+)$		
611	1002.8	$11/2^{-}$	391.7	$7/2^{-}$		
631	1063.5	$(11/2^+)$	431.9	$9/2^{+}$		
712	1371.1	$13/2^{-}$	658.9	9/2-		
714	1889.2	$(15/2^+)$	1175.2	$13/2^{+}$		
744	1175.2	$13/2^{+}$	431.9	9/2+		
825	1889.2	$(15/2^+)$	1063.5	$(11/2^+)$		
826	1828.3	$15/2^{-}$	1002.8	$11/2^{-}$		
867	2933.8	$(19/2^+)$	2066.6	$17/2^{+}$		
892	2066.6	17/2+	1175.2	13/2+		
913	2284.2	$17/2^{-1}$	13/1.1	$13/2^{-}$		
984	4133.8	$(23/2^+)$	3150.7	21/2		
1033	2861.4	$\frac{19/2}{(10/2^{+})}$	1828.3	15/2		
1044	2955.8	$(19/2^{+})$	1889.2	$(15/2^{+})$		
1085	3130.7	$\frac{21}{2}$	2000.0	$\frac{17}{2}$		
1158	6562 A	$\frac{21}{2}$ $\frac{31}{2}$	5404.4	$\frac{17}{2}$		
1195	6801.7	$\frac{31/2}{33/2^+}$	5606.7	$29/2^+$		
1199	4133.8	$(23/2^+)$	2933.8	$(19/2^+)$		
1208	5341.8	$(23/2^{+})$ $(27/2^{+})$	4133.8	(1)/2 (23/2 ⁺)		
1211	5606.7	$29/2^+$	4395.7	$(25/2^+)$		
1223	4084.4	$\frac{23}{2}$	2861.4	$19/2^{-}$		
1245	4395.7	$\frac{25}{2^{+}}$	3150.7	$21/2^+$		
1263	4644.2	$25/2^{-}$	3381.2	$21/2^{-}$		
1295	8097	37/2+	6801.7	$33/2^+$		
1301	7325.3	33/2-	6024.2	$29/2^{-}$		
1320 [†]	5404.4	$27/2^{-}$	4084.4	$23/2^{-}$	(Q)	DCO=0.9 <i>I</i>
1000	5 00 2	05/0-	(5(0))	21/2-		DCO for 1320 doublet.
1320	7882	35/2-	6562.4	$31/2^{-}$	(Q)	
1380	6024.2	29/2	4644.2	25/2		
1409	0/34 5500 4	37/2 27/2(-)	1023.3	22/2 22/2-		
1410	0510	21/2 41/2+	4084.4	23/2		
1422	9319	$(35/2^{-})$	6005 /	$(31/2^{-})$		
1405	6005 4	(33/2) $(21/2^{-})$	5500.4	(31/2)		
1495	0390	(31/2) $30/2^{-}$	7887	25/2-		
1545	3611.6	59/2	2066.6	$\frac{35/2}{17/2^+}$		
1552	6196.2		2000.0 4644 2	$25/2^{-}$		
1611	10345	$41/2^{-}$	8734	37/2-		
1700	11089	$43/2^{-}$	9389	39/2-		
1712	11231	$45/2^+$	9519	$41/2^+$		
1737	12082	$45/2^{-}$	10345	$41/2^{-}$		
1862	12951	$47/2^{-}$	11089	$43/2^{-}$		E_{γ} : 1882 in ${}^{40}Ca({}^{36}Ar,2pn\gamma),({}^{40}Ca,\alpha 2pn\gamma)$ (2002Ke03), which is also
	-	,				listed in Adopted dataset. Value of 1862 in 2010St05 could be a misprint.
1875	13957	49/2-	12082	45/2-		-

Continued on next page (footnotes at end of table)

40 Ca(40 Ca, α 2pn γ) 201	10St05 (continued)
---	---------------------------

γ ⁽⁷³Kr) (continued)

E_{γ}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Eγ	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$
2039 2130 2174 2297 2620 2622	14990 13361 16131 17288 18751 15983	(51/2 ⁻) 49/2 ⁺ 53/2 ⁻ (55/2 ⁻) (57/2 ⁻) (53/2 ⁺)	12951 11231 13957 14990 16131 13361	47/2 ⁻ 45/2 ⁺ 49/2 ⁻ (51/2 ⁻) 53/2 ⁻ 49/2 ⁺	2687 3152 3166 3190 3727	19975 21903 19149 23165 22876	$(59/2^{-}) (61/2^{-}) (57/2^{+}) (63/2^{-}) (61/2^{+})$	17288 18751 15983 19975 19149	(55/2 ⁻) (57/2 ⁻) (53/2 ⁺) (59/2 ⁻) (57/2 ⁺)

[†] Multiply placed.

Level Scheme

⁷³₃₆Kr₃₇

Level Scheme (continued)

6

$\frac{{}^{40}\text{Ca}({}^{40}\text{Ca},\alpha 2\text{pn}\gamma) \quad 2010\text{St05}}{}$ Legend

Level Scheme (continued)

 $--- \blacktriangleright \gamma$ Decay (Uncertain)

 $^{73}_{36}{
m Kr}_{37}$

⁷³₃₆Kr₃₇