History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh and Jun Chen	NDS 158, 1 (2019)	16-May-2019						

2002Ke03: $E({}^{36}Ar)=145$ MeV, $E({}^{40}Ca)=160$ MeV. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin, (particle) $\gamma\gamma$ -coin, $\gamma\gamma(\theta)(DCO)$ using Gammasphere array for γ rays, Microball CsI detector array for charged particles and an array of 30 liquid scintillation counters for neutrons at ATLAS-ANL facility. Deduced high-spin levels, J^{π} , bands.

2008Jo07: $E({}^{40}Ca)=165$ MeV beam provided by ATLAS accelerator at Argonne. Measured E γ , $\gamma\gamma$ -coin, level lifetimes by DSAM method using Gammasphere array of 99 HPGe detectors with Compton-suppression. Detected charged particles using MICROBALL array. From measured lifetimes, transition quadrupole moments (Q_t) were deduced. Discussed triaxial shapes. Comparison with predictions of cranked Nilsson-Strutinsky and cranked relativistic mean-field theory calculations. See also 2003KeZZ conference report from the same group.

1993Fr03 (also Ph.D. thesis by S. Freund, University of Cologne, 1998): 40 Ca(36 Ar,2pn γ) E=130-145 MeV. Measured E γ , $\gamma\gamma$, $n\gamma\gamma$ -coin, $\gamma\gamma(\theta)$ (DCO) using OSIRIS array of 12 BGO-shielded Ge detectors in combination with neutron multiplicity filter in one experiment and BGO- γ multiplicity filter in the other. Negative parity bands up to 25/2⁻ and positive parity bands up to 21/2⁺ were identified. All the 18 excited states agree with those from 2002Ke03, but the spins for the negative-parity bands are lower by one unit in 1993Fr03, due to g.s. spin of 5/2 (in 1993Fr03) rather than 3/2, as proposed by 1999Mi17 and 2002Ke03. Others:

1993Mo14: ⁴⁰Ca(³⁶Ar,2pn γ) E=95 MeV. Measured E γ , I γ , $\gamma\gamma$, n $\gamma\gamma$ coin using HERA array for γ rays and a neutron detector. Out of 28 γ rays and four cascades assigned to ⁷³Kr, only eight γ rays in one cascade have been verified by 2002Ke03. The other γ rays and cascades probably belong to ⁷³Se and ⁷⁶Br.

1990Sa04: ⁴⁰Ca(³⁵Cl,pn γ) E=95 MeV. Measured E γ , I γ , $\gamma\gamma$ using an array of 20 Ge detectors. Out of 22 γ rays assigned to ⁷³Kr, only five γ rays may correspond to those in 2002Ke03. None of the two cascades proposed is verified by 2002Ke03. These seem to belong to ⁷³Se and ⁷⁶Br, as pointed out by 1993Fr03.

⁷³Kr Levels

 Q_t =transition quadrupole moment, deduced by 2008Jo07 from their lifetime measurements. Values of lifetimes are not available, although, $F(\tau)$ values are listed in authors' table I, and in comments here.

E(level) [†]	Jπ‡	T _{1/2}	Comments
0.0#	3/2-		
143.97 [@] 10	5/2-		
367.83 ^{&} 10	5/2+		
392.88 [#] 13	7/2-		
433.66 ^{&} 12	9/2+	107 ns 10	$T_{1/2}$: from Adopted Levels. Other: 97-416 ns (1993Fr03).
511.7 ^a 6	$(7/2^+)$		
660.07 [@] 13	9/2-		
852.7?			E(level): from 1993Fr03 only, not included in the Adopted Levels, Gammas dataset.
1003.88 [#] 16	$11/2^{-}$		
1066.0 ^{<i>a</i>} 4	$11/2^{+}$		
1177.77 ^{&} 23	$13/2^{+}$		
1372.18 [@] 16	13/2-		
1830.6 [#] 3	$15/2^{-}$		
1892.1 ^{<i>a</i>} 4	$15/2^{+}$		
2069.8 ^{&} 3	$17/2^{+}$		
2285.18 [@] 19	$17/2^{-}$		
2864.6 [#] 4	(19/2 ⁻)		$F(\tau)=0.891\ 7\ for\ 1034\gamma\ (2008Jo07).$ $Q_t=2.99\ 8\ (2008Jo07).$
2937.5 ^a 5	19/2+		

1

$\frac{{}^{40}\text{Ca}({}^{36}\text{Ar,2pn}\gamma),({}^{40}\text{Ca},\alpha2\text{pn}\gamma)}{2002\text{Ke03}} \text{ (continued)}$

⁷³Kr Levels (continued)

E(level) [†]	Jπ‡	Comments
3155.2 ^{&} 4	$21/2^{+}$	
3382.29 [@] 22	21/2-	F(τ)=0.891 <i>1</i> for 1097 γ (2008Jo07). Q _t =3.26 8 (2008Jo07).
4087.7 [#] 4	(23/2 ⁻)	$F(\tau)=0.894$ 7 for 1223 γ (2008Jo07). Ot=2.95 8 (2008Jo07).
4139.3 ^{<i>a</i>} 8	$(23/2^+)$	
4401.3 ^{&} 4	25/2+	$F(\tau)=0.891 \ 2 \text{ for } 1246\gamma \ (2008Jo07).$ $Q_t=2.44 \ 8 \ (2008Jo07).$
4645.4 [@] 3	25/2-	$F(\tau)=0.896\ 2$ for 1263γ (2008Jo07). $Q_t=3.21\ 8$ (2008Jo07).
5407.6 [#] 5	(27/2 ⁻)	$F(\tau)=0.901$ 7 for 1320 γ (2008Jo07). $Q_t=2.90$ 8 (2008Jo07).
5493.4 ^{<i>a</i>} 22	(27/2 ⁺)	E(level): this level is not included in Adopted Levels, Gammas dataset, as the tentative 1354γ is not confirmed in ${}^{40}Ca({}^{40}Ca,\alpha 2pn\gamma)$ (2010St05).
5504.6 6		
5615.2 ° 5	29/2+	$F(\tau)=0.891\ 2$ for 1214γ (2008Jo07). $Q_t=2.39\ 8$ (2008Jo07).
6027.4 [@] 5	(29/2-)	$F(\tau)=0.901\ 2$ for 1382γ (2008Jo07). $Q_t=3.16\ 8\ (2008Jo07).$
6567.6 [#] 6	(31/2-)	F(τ)=0.903 4 for 1160 γ (2008Jo07). Qt=2.85 8 (2008Jo07).
6700 ^{<i>a</i>} 4	$(31/2^+)$	
6812.2 ^{<i>x</i>} 6	(33/2 ⁺)	$F(\tau)=0.893\ 2$ for 1197 γ (2008Jo07). $Q_t=2.34\ 8$ (2008Jo07).
7002.1 9		
7330.4 6	(33/2 ⁻)	$F(\tau)=0.911 \ 3 \text{ for } 1303\gamma \ (2008Jo07).$ $Q_t=3.10 \ 8 \ (2008Jo07).$
7890.7# 6	(35/2 ⁻)	$F(\tau)=0.909\ 7\ for\ 1323\gamma\ (2008Jo07).$ $Q_t=2.78\ 8\ (2008Jo07).$
8109.2 ^{&} 7	(37/2 ⁺)	$F(\tau)=0.904 \ 3 \ \text{for} \ 1297\gamma \ (2008Jo07).$ $Q_t=2.27 \ 8 \ (2008Jo07).$
8741.4 [@] 9	(37/2-)	$F(\tau) = 0.926 \ 4 \ \text{for} \ 1411\gamma \ (2008\text{Jo07}).$ Qt=3.03 8 (2008Jo07).
9400.7 [#] 7	(39/2-)	$F(\tau)=0.931 \ 4 \ for \ 1510\gamma \ (2008Jo07).$ $Q_t=2.70 \ 8 \ (2008Jo07).$
9534.2 ^{&} 8	$(41/2^+)$	$F(\tau)=0.918 \ 3 \ \text{for} \ 1425\gamma \ (2008Jo07).$ $Q_t=2.19 \ 8 \ (2008Jo07).$
10356.6 [@] 10	$(41/2^{-})$	F(τ)=0.937 4 for 1615 γ (2008Jo07). Q _t =2.95 8 (2008Jo07).
11105.6 [#] 8	(43/2 ⁻)	F(τ)=0.957 4 for 1705 γ (2008Jo07). Qt=2.50 8 (2008Jo07).
11253.3 ^{&} 10	$(45/2^+)$	$F(\tau)=0.947 \ 3 \ \text{for} \ 1719\gamma \ (2008Jo07).$ $Q_t=1.99 \ 8 \ (2008Jo07).$
12099.7 [@] 11	(45/2 ⁻)	$F(\tau)=0.946\ 5\ for\ 1743\gamma\ (2008Jo07).$ $Q_t=2.85\ 8\ (2008Jo07).$
12987.6 [#] 10	$(47/2^{-})$	
13388.3 ^{&} 15	$(49/2^+)$	
13967.8 [@] 13	(49/2 ⁻)	$F(\tau)=0.958\ 6\ \text{for}\ 1868\gamma\ (2008\text{Jo07}).$ $Q_t=2.60\ 8\ (2008\text{Jo07}).$
15031.5 [#] 12	(51/2 ⁻)	

⁴⁰Ca(³⁶Ar,2pn γ),(⁴⁰Ca, α 2pn γ) 2002Ke03 (continued)

⁷³Kr Levels (continued)

E(level) [†]	J ^π ‡	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	Jπ‡
16013 ^{&} 6	$(53/2^+)$	17334.6 [#] 16	(55/2 ⁻)	19185 <mark>&</mark> 10	$(57/2^+)$	21930 [@] 10	(61/2 ⁻)
16146.8 [@] 15	$(53/2^{-})$	18768.9 [@] 25	$(57/2^{-})$	20029.6 [#] 19	$(59/2^{-})$	23237 [#] 5	$(63/2^{-})$

[†] From least-squares fit to $E\gamma$ data.

[‡] As proposed by 2002Ke03, based on multipolarity and ΔJ assignments from their $\gamma\gamma(\theta)$ (DCO) data, and band assignments. [#] Band(a): Band based on $3/2^-, \alpha = -1/2$. At high spins, configuration= $\pi[((pf)^5g_{9/2}^3)] \otimes \nu[(pf)^6g_{9/2}^3]$.

[@] Band(A): Band based on $5/2^-, \alpha = +1/2$. At high spins, configuration= $\pi[((pf)^5 g_{9/2}^{3})] \otimes \nu[(pf)^6 g_{9/2}^{3}]$.

& Band(B): Band based on $5/2^+, \alpha = +1/2$. At high spins, configuration = $\pi[((pf)^6 g_{9/2}^{2/2})] \otimes v[(pf)^6 g_{9/2}^{3/2}]$. This band is nearly prolate with v5/2[422] as the dominant component; $\beta_2 \approx 0.37$ at low frequencies and $\beta_2 \approx 0.30$ after the $\pi g_{9/2}^2$ alignment, triaxial parameter $\gamma = 2-3^{\circ}$ (2002Ke03).

^{*a*} Band(b): Band based on $(7/2^+), \alpha = -1/2$. At high spins, configuration= $\pi[((pf)^6 g_{9/2}^2)] \otimes \nu[(pf)^6 g_{9/2}^3]$. See also comment for $\alpha = +1/2$ signature partner. 2002Ke03 state that this band may be based on a different configuration.

$\gamma(^{73}{\rm Kr})$

With gates on stretched quadrupole transitions, average DCO values were ≈ 1.1 for stretched quadrupoles and ≈ 0.8 for stretched dipoles (2002Ke03).

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	Comments
40.8 [‡]		433.66	9/2+	392.88	7/2-			
65.8		433.66	$9/2^{+}$	367.83	$5/2^{+}$			
143.6		511.7	$(7/2^+)$	367.83	$5/2^+$			E_{γ} : from 1993Fr03, listed as 144 in figure 1 of 2002Ke03.
144.0 <i>1</i>	100 5	143.97	$5/2^{-}$	0.0	$3/2^{-}$	D		DCO=0.77 11
			,		,			Mult.: from DCO, expected to be M1 or M1(+E2) from ΔJ^{π} .
224 1		367.83	5/2+	143 97	5/2-			I_{γ} . 100 4. I · 7 2
249 0 2	23 12	392.88	$\frac{3}{2}^{-}$	143.97	$5/2^{-}$	(M1+E2)	+0.30.9	DCO=0.76.6
2.0.10 2	2012	072100	.,_	1.0007	0/2	(δ: other: 0.76 8 from E2/M1 γ-intensity ratio (2002Ke03).
								I_{γ} : 24 6.
0(71)	17.5	((0.07	0/2-	202.00	7/0-		0 77 10	$I\gamma(249)/I\gamma(393)=13.7 \ I2/28.8 \ I2 \ (1993Mo14).$
267.1 3	17.5	660.07	9/2	392.88	1/2	(M1+E2)	+0.77 12	 DCO=0.63 5 δ: other: 0.62 11 from E2/M1 γ-intensity ratio (2002Ke03). I_γ: 6 3.
								$I_{\gamma}^{\prime}(267)/I_{\gamma}(516)=13.3 \ 11/32 \ 3 \ (1993Mo14).$
343.6 8		1003.88	11/2-	660.07	9/2-	(M1+E2)	+1.05 29	 δ: other: 1.06 26 from E2/M1 γ-intensity ratio (2002Ke03). I_γ: 5 2.
367.8		367.83	$5/2^{+}$	0.0	3/2-			$I_{\gamma}(368)/I_{\gamma}(224)=27.0.22/47.3.(1993Mo14)$
368.4 6		1372.18	13/2-	1003.88	11/2-	(M1+E2)	+0.64 23	δ : other: 0.45 <i>15</i> from E2/M1 γ -intensity ratio (2002Ke03)
								$I_{v}: 4 2.$
393 1	43 6	392.88	7/2-	0.0	3/2-	Q		DCO=0.97 <i>10</i> I _y : 59 2.
419 &		852.7?		433.66	9/2+			E_{γ} : from 1993Fr03 only, not included in the Adopted Levels, Gammas dataset.

Continued on next page (footnotes at end of table)

40 Ca(36 Ar,2pn γ),(40 Ca, α 2pn γ)	2002Ke03 (continued)
---	----------------------

γ ⁽⁷³ Kr) (continued)											
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	J_f^{π}	Mult. [#]	$\delta^{@}$	Comments			
516.1 <i>1</i>	68 12	660.07	9/2-	143.97	5/2-	Q		DCO=0.91 7			
554.3 <i>5</i> 611.0 <i>1</i>	68 11	1066.0 1003.88	11/2 ⁺ 11/2 ⁻	511.7 392.88	(7/2 ⁺) 7/2 ⁻	Q		$I_{\gamma}: 68 2.$ $I_{\gamma}: 7 4.$ DCO=1.26 18			
632.3 <i>4</i> 712.1 <i>1</i>	67 10	1066.0 1372.18	11/2 ⁺ 13/2 ⁻	433.66 660.07	9/2+ 9/2 ⁻	Q		$I_{\gamma}: 58 \ 0.$ $I_{\gamma}: 16 \ 3.$ DCO=1.17 <i>10</i> $I_{\gamma}: I4$			
714.3 4		1892.1	15/2+	1177.77	13/2+	(M1+E2)	-0.42 21	δ : other: 0.65 20 from E2/M1 γ -intensity ratio (2002Ke03).			
744.1 2	63 7	1177.77	13/2+	433.66	9/2+	Q		I_{γ} : 12 3. DCO=1.00 20 I_{γ} : 99 4.			
826.2 <i>5</i> 826.7 <i>2</i>	66 8	1892.1 1830.6	15/2 ⁺ 15/2 ⁻	1066.0 1003.88	11/2 ⁺ 11/2 ⁻	Q		$I_{\gamma}: < 20.$ DCO=1.4 3 L: 61 4			
867.8 4		2937.5	19/2+	2069.8	17/2+	(M1+E2)	-0.29 25	δ : other: 0.42 <i>12</i> from E2/M1 γ -intensity ratio (2002Ke03).			
892.0 2	54 7	2069.8	17/2+	1177.77	13/2+	Q		DCO=0.94 5 L · 95 4			
913.0 <i>1</i>	63 10	2285.18	17/2-	1372.18	13/2-	Q		DCO=0.94 9 L _v : 64 4.			
984 <i>1</i> 1034.0 <i>2</i> 1045 3 6	63 9	4139.3 2864.6 2037 5	$(23/2^+)$ $(19/2^-)$ $10/2^+$	3155.2 1830.6	21/2 ⁺ 15/2 ⁻ 15/2 ⁺			$I_{\gamma}: <5.$ $I_{\gamma}: <5.$ $I_{\gamma}: 63 \ 6.$ $I_{\gamma}: <20$			
1045.4 2	49 6	3155.2	$\frac{19/2}{21/2^+}$	2069.8	$17/2^+$	Q		DCO=1.7 2			
1097.1 <i>1</i>	56 8	3382.29	21/2-	2285.18	17/2-	(Q)		I_{γ} : 75 4. DCO=0.90 13 I_{γ} : 61 2.			
1160.0 <i>3</i> 1197.0 <i>2</i> 1202 <i>I</i> 1207 ^{&} <i>3</i>	36 6 30 6	6567.6 6812.2 4139.3 6700	$\begin{array}{c} (31/2^{-}) \\ (33/2^{+}) \\ (23/2^{+}) \\ (31/2^{+}) \end{array}$	5407.6 5615.2 2937.5 5493.4	(27/2 ⁻) 29/2 ⁺ 19/2 ⁺ (27/2 ⁺)			I' _y : 14 2. I _y : 33 4. I _y : <10. I _y : <5. This γ is placed from a 5342, (27/2 ⁺) level in Adopted dataset as in $\sqrt{102}$ $\sqrt{402}$ = 2 = 2 = 20102102			
1213.9 <i>3</i>	40 5	5615.2	29/2+	4401.3	25/2+	Q		$^{+0}Ca(^{+0}Ca,\alpha^2 pn\gamma)$ (2010St05). DCO=1.6 4			
1223.1 2	55 7	4087.7	(23/2 ⁻)	2864.6	(19/2 ⁻)	Q		1_{γ} . 57 4. DCO=1.7 3 L.: 42 4			
1246.1 2	35 6	4401.3	25/2+	3155.2	21/2+	(Q)		$DCO=0.90\ 20$			
1263.1 2	52 8	4645.4	25/2-	3382.29	21/2-	Q		DCO=1.22 <i>15</i> Lv: 34 <i>4</i>			
1297.0 <i>3</i>	28 4	8109.2	$(37/2^+)$	6812.2	$(33/2^+)$	Q		DCO=2.1 5 L _v : 19 4.			
1303.0 <i>3</i>	29 6	7330.4	(33/2 ⁻)	6027.4	(29/2 ⁻)	Q		DCO=1.4 3 I _y : 9 2.			
1319.9 2 1323.1 2	29 6 42 7	5407.6 7890.7	(27/2 ⁻) (35/2 ⁻)	4087.7 6567.6	(23/2 ⁻) (31/2 ⁻)	Q		I _γ : 18 6. DCO=1.04 <i>13</i> I _γ : 11 6.			
1354 ^{&} 2 1382.0 4 1411.0 6	40 8 18 5	5493.4 6027.4 8741.4	(27/2 ⁺) (29/2 ⁻) (37/2 ⁻)	4139.3 4645.4 7330.4	(23/2 ⁺) 25/2 ⁻ (33/2 ⁻)	Q		$I_{\gamma}: <5.$ $I_{\gamma}: 17 \ 4.$ DCO=1.03 16 $I_{\gamma}: 10 \ 2.$			

Continued on next page (footnotes at end of table)

40 Ca(36 Ar,2pn γ),(40 Ca, α 2pn γ) 2002Ke03 (continued)

						$\gamma(^{\prime 3}\mathrm{Kr})$ (continued)	
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult.#		Comments
1416.9 4	17 4	5504.6		4087.7	$(23/2^{-})$		I_{γ} : 12 2.	
1425.0 5	27 4	9534.2	$(41/2^+)$	8109.2	(37/2+)	Q	DCO=1.5 3 I _{γ} : 11 2.	
1497.5 7	11 <i>3</i>	7002.1		5504.6			,	
1510.0 3	24 5	9400.7	$(39/2^{-})$	7890.7	$(35/2^{-})$	Q	DCO=1.4 3	
1615.1 4	14 5	10356.6	$(41/2^{-})$	8741.4	$(37/2^{-})$			
1704.8 5	18 <i>3</i>	11105.6	$(43/2^{-})$	9400.7	$(39/2^{-})$			
1719.0 6	11 <i>3</i>	11253.3	$(45/2^+)$	9534.2	$(41/2^+)$			
1743.1 5	11 2	12099.7	$(45/2^{-})$	10356.6	$(41/2^{-})$			
1868.1 7	10 <i>3</i>	13967.8	$(49/2^{-})$	12099.7	$(45/2^{-})$			
1882.0 6	14 <i>3</i>	12987.6	$(47/2^{-})$	11105.6	$(43/2^{-})$			
2043.9 6	11 2	15031.5	$(51/2^{-})$	12987.6	$(47/2^{-})$			
2135 <i>I</i>	62	13388.3	$(49/2^+)$	11253.3	$(45/2^+)$			
2179.0 7	73	16146.8	$(53/2^{-})$	13967.8	$(49/2^{-})$			
2303 1	52	17334.6	$(55/2^{-})$	15031.5	$(51/2^{-})$			
2622 2	32	18768.9	$(57/2^{-})$	16146.8	$(53/2^{-})$			
2625 5	4 1	16013	$(53/2^+)$	13388.3	$(49/2^+)$			
2695 1	51	20029.6	$(59/2^{-})$	17334.6	$(55/2^{-})$			
3161 9	11	21930	$(61/2^{-})$	18768.9	$(57/2^{-})$			
3172 8	11	19185	$(57/2^+)$	16013	$(53/2^+)$			
3207 4	11	23237	$(63/2^{-})$	20029.6	$(59/2^{-})$			

[†] From (³⁶Ar,2pn γ) reaction (2002Ke03), unless otherwise noted. Corresponding I γ values from ⁴⁰Ca(⁴⁰Ca, α 2pn γ) (2002Ke03) are given under comments.

[‡] From 2000Ch07, uncertainty of 0.1 keV assumed by the evaluator.

[#] Assigned by evaluators based on DCO data in 2002Ke03. Mult=Q indicates $\Delta J=2$ stretched quadrupole (most likely E2) transition.

^(a) From angular distribution data (2002Ke03), as displayed in authors' Fig. 5. Authors also deduced δ (E2/M1) from E2/M1 γ -intensity ratios, as given in their Table II, and in comments here.

& Placement of transition in the level scheme is uncertain.

72

2002Ke03

 40 Ca(36 Ar,2pn γ),(40 Ca, α 2pn γ)

Legend

$\begin{array}{l} I_{\gamma} < \ 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ \gamma \text{ Decay (Uncertain)} \end{array}$ ► Level Scheme Intensities: Relative I_{γ} • • _ _ + 3207 1 (63/2-) 23237 + 3161 1 $(61/2^-)$ 21930 ^{، دووج} ج (59/2-) 20029.6 31221 (57/2+) 19185 -67- $(57/2^{-})$ 18768.9 ^{, 23}03 5 $(55/2^{-})$ 17334.6 | < 0:6275 H -205 $\frac{(53/2^-)}{(53/2^+)}$ 16146.8 + 2043.9 1 + 16013 $(51/2^{-})$ 15031.5 07 19087 + $(49/2^{-})$ 13967.8 196-014 2135 $(49/2^+)$ 13388.3 $(47/2^{-})$ 12987.6 1.543. $(45/2^{-})$ 12099.7 2 ,0.61L1 8:00; (45/2+) 11253.3 (43/2-) 11105.6 1012 1 1250 1023 1 1,510,0 0,24 $(41/2^{-})$ 10356.6 - 618 $(41/2^+)$ 9534.2 $\frac{\overline{(39/2^-)}}{(37/2^-)}$ 9400.7 10:11/21 . + 1292 | 282 | 282 | 133,1 8741.4 (37/2+) 8109.2 0.00 0.00 $(35/2^{-})$ 7890.7 (33/2-) 7330.4 õ 7002.1 .е С $(33/2^+)$ ŝ 6812.2 $\frac{(33/2^{+})}{(31/2^{-})}$ 6700 6567.6 $(29/2^{-})$ 6027.4 29/2+ 5615.2 5504.6 $(27/2^+)$ 5493.4 0.0 3/2-

⁷³₃₆Kr₃₇

⁷³₃₆Kr₃₇

7

⁴⁰Ca(³⁶Ar,2pnγ),(⁴⁰Ca,α2pnγ) 2002Ke03

Band(a): Ban 3/2 ⁻ ,α=	d based on =–1/2						
(63/2 ⁻)	23237	Band(A): Ban 5/2 ⁻ ,α=	d based on :+1/2				
3207		(61/2 ⁻)	21930				
(59/2 ⁻)	20029.6	3161		Band(B): Ban 5/2 ⁺ ,α=	d based on :+1/2		
2695		(57/2-)	18768.9	(57/2+)	19185		
(55/2 ⁻)	17334.6	2622		3172			
2303		(53/2-)	16146.8	(53/2+)	16013		
(51/2 ⁻)	15031.5	2179		2625			
2044 (47/2 ⁻)	12987.6	(49/2-)	13967.8	(49/2 ⁺)	13388.3		
1882		(45/2 ⁻)	12099.7	2135			
(43/2 ⁻)	11105.6	1743 (41/2)	10356.6	(45/2+)	11253.3		
1705 (39/2 ⁻)	9400.7	1615	100000	(41/2 ⁺)	9534.2		
1510 (35/2 ⁻)	7890.7	(37/2 ⁻)	8741.4	(37/2 ⁺)	8109.2	Band(b): Ban	d based on
1323 (31/2 ⁻)	6567.6	(33/2 ⁻)	7330.4	(33/2 ⁺)	6812.2	(7/2 ⁺),α: (31/2 ⁺)	=-1/2 6700
(27/2 ⁻)	5407.6	(29/2 ⁻)	6027.4	1197 29/2 ⁺	5615.2	(27/2 ⁺)	5493.4
1320 (23/2 ⁻)	4087.7	<u>25/2</u>	4645.4	1214 25/2+	4401.3	(23 /2 ⁺)	4139.3
(19/2 ⁻)	2864.6	1263 21/2-	3382.29	1246 21/2+	3155.2	1202 19/2 ⁺	2937.5
1034 15/2 ⁻	1830.6	$\frac{17/2^{-}}{13/2^{-}} \xrightarrow{913}$	2285.18	1085 17/2 ⁺	2069.8	1045 15/2 ⁺	1892.1
$\frac{11/2^{-}}{7/2^{-}} \stackrel{827}{\leftarrow} 11$	1003.88	9/2- 712	660.07	$\frac{13/2^+}{9/2^+}$	1177.77 433.66	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1066.0 511.7
$\frac{1/2}{3/2^-}$ 393	0.0	5/2- 516	143.97	5/2 66 =	- 30/.83		

⁷³₃₆Kr₃₇