⁷³Ga₄₂-1

Coulomb excitation 2010Di14

History

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh and Jun Chen NDS 158, 1 (2019) 16-May-2019

2010Di14: E=2.95 MeV/nucleon ⁷³Ga beam was produced from the REX-ISOLDE facility via the U(p,X) reaction with 1.4 GeV protons. Targets were 1.7 mg/cm² ¹²⁰Sn or 2 mg/cm² ¹⁰⁴Pd. γ rays were detected with the MINIBALL array consisting of eight clusters of three HPGe crystals and charged particles were detected with a Compact Disk-shaped segmented double-sided silicon detector. Measured Eγ, Iγ, (particle)γγ-coin. Deduced levels, B(E2) values. Comparisons with available data.

⁷³Ga Levels

E(level) [†]	Jπ‡	Comments				
0.0	1/2-					
0.4 4	3/2-	E(level): existence of a level near the $1/2^-$ g.s. is deduced from the observed Doppler-broadening of 199.2γ from the 199.2 , $5/2^-$ level, which restricts the lifetime of the $5/2^-$ level considerably smaller than 3.5 ns (maximum time-of-flight between target and detector), consistent with the lifetime=3.3 ps from Weisskopf estimate for a pure 199 -keV M1 transition to a level with J^{π} between $3/2^-$ and $7/2^-$ but not with 13 ns 2 from measured B(E2)(W.u.)=11 2 for the assumption of a pure E2 to $1/2^-$ g.s. E(level): the energy of this level is estimated by $2010Di14$ as 0.4 keV 4 from adopted E γ =496.07 12 from 496 level and E γ =218.08 11 and 278.5 3 cascade adding to 496.5 4. Energy is 0.15 keV 15 in Adopted Levels.				
199.2 5	5/2-					
217.8 5	3/2-					
496.2 <i>5</i>	$5/2^-,7/2^-$	J^{π} : direct population of this state via Coulomb excitation from $1/2^{-}$ ground supports $5/2^{-}$ (2010Di14).				
651.2 9	$(7/2^{-})$	The population of this state by Coulomb excitation from 1/2 ⁻ g.s. can only take place by a two-step process (2010Di14).				
1395.1 <i>12</i>	(5/2 ⁻)	 J^π: proposed by 2010Di14 from observed population compatible with single-step Coulomb excitation from 1/2⁻ g.s. A two-step excitation would require unreasonably large B(E2) values between this state and 3/2⁻ and 5/2⁻ states leading to strong γ-decay branches to these states which however are not observed (2010Di14). T_{1/2}: 2.0 ps +6-5 from B(E2)(W.u.)=3.0 7 if 1395γ to 1/2⁻ g.s. 				

^{11/2. 2.0} ps +0 3 from B(B2)(W.u.)=3.0 / fr 13/3/ to

γ (73Ga)

B(E2)(W.u.) values are extracted from experimental Coulomb excitation cross sections deduced from observed γ -ray yields normalized to the known cross section for excitation of the first 2⁺ states in 104 Pd and 120 Sn targets (2010Di14).

E_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	Comments
199.2 5	199.2	5/2-	0.4 3/2	=	B(E2)(W.u.)=11 2 (2010Di14)
218.4 6	217.8	3/2-	0.0 1/2	_	5530 102 counts in 199 peak. B(E2)(W.u.)=7.5 10 (2010Di14) 2294 66 counts in 218 peak.
279.0 7	496.2	5/2-,7/2-	217.8 3/2	_	161 29 counts in 279 peak.
298 2	496.2	$5/2^-,7/2^-$	199.2 5/2	-	
434.0 15	651.2	$(7/2^{-})$	217.8 3/2	_	23 14 counts in 434 peak.
451.7 <i>11</i>	651.2	$(7/2^{-})$	199.2 5/2	_	68 19 counts in 452 peak.
495.8 5	496.2	5/2-,7/2-	0.4 3/2	-	B(E2)(W.u.)=6.5 10 (2010Di14) 1187 34 counts in 496 peak.
651 2 1395.1 <i>12</i>	651.2 1395.1	(7/2 ⁻) (5/2 ⁻)	0.4 3/2 0.0 1/2		49 9 counts in 651 peak. B(E2)(W.u.)=3.0 7 (2010Di14)

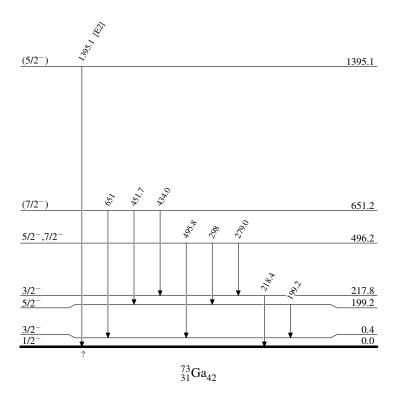
[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels, unless otherwise noted.

Coulomb excitation 2010Di14 (continued)

γ (73Ga) (continued)

 $E_i(level)$


Comments

42 7 counts in 1395 peak. This γ decays to g.s., $1/2^-$ and/or 0.4-keV, $3/2^-$ level.

 † From 2010Di14.

Coulomb excitation 2010Di14

Level Scheme

