Adopted Levels, Gammas

	History							
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh and Jun Chen	NDS 158, 1 (2019)	16-May-2019					
Q(β ⁻)=6606.0 27; S(n)=7275.8 24; S(p)=	12050.3 30; $Q(\alpha) = -1113 \times 10^{10}$	14 2017Wa10						
$S(2n)=12418.9 \ 24, \ S(2p)=29200 \ 470, \ Q(\beta^{-}n)=1086.7 \ 29 \ (2017Wa10).$								
Other measurements:	24		220					
1983Ru06: production and identification in $W(^{76}Ge,X) E=9$ MeV/nucleon followed by mass separation. Other: $^{238}U(p,F) E=30$								
MeV (2002Kr13, 2002Kr10).								
2007Gu09, 2007Ra27: measured mass.								
2009F103, 2010Vi07: ⁷³ Cu was produced	at ISOLDE facility in U(p,F) n	eaction. Resonance Io	nization laser ion source (RILIS)					
used to laser ionize the atoms. Measu	red hyperfine structure. Deduce	ed spin, magnetic dipo	le and electric quadrupole moment of the					
ground state. Collinear and in-source laser spectroscopic technique Authors state that quadrupole moments can be deduced from								
these measurements and will be discussed in a forthcoming paper. Comparison with large-scale shell-model calculations.								
2016Bi08: ⁷³ Cu isotope produced in U(p,X), E=1.4 GeV reaction at the CERN-ISOLDE facility, followed by selective ionization								
using RILIS laser ion source, accelera	ted to 30 keV and injected into	o a gas-filled linear Pa	ul trap. Measured isotope shift with					
respect to ⁶⁵ Cu using the collinear laser spectroscopy setup. Comparison with droplet model predictions.								
2017De30: ⁷³ Cu produced in 1.4-GeV pr	oton bombardment of UC_x targ	et using HRS mass se	parator, ISCOOL gas-filled					
segmented linear Paul trap, and RILIS	at ISOLDE-CERN facility. M	leasured hyperfine spec	tra, hyperfine structure parameters,					
magnetic dipole moment and electric	quadrupole moment by Colline	ar Resonance Ionizatio	on Spectroscopy (CRIS). See also					

magnetic dipole moment and electric quadrupole moment by Collinear Reso previous measurements at the same laboratory by 2009F103 and 2010Vi07. 2017Yu05: ⁹Be(⁸⁶Kr,X), E=64 MeV/nucleon; analyzed available data; deduced S(n) and S(2n).

⁷⁴Ni is expected to decay by β^- n mode to ⁷³Cu, but no details are available. Additional information 1.

⁷³Cu Levels

Cross Reference (XREF) Flags

 73 Ni β^- decay (0.84 s) Coulomb excitation 238 U(76 Ge,X γ) A

В

С

E(level)	J^{π}	T _{1/2}	XREF	Comments
0.0	3/2-	4.2 s <i>3</i>	ABC	$\label{eq:product} \begin{split} & \ensuremath{\ensuremath{\ensuremath{\beta}}} \\ & \ensuremath{\ensuremath{\beta}} = 100; \ensuremath{\ensuremath{\beta}} & \ensuremath{\ensuremath{\beta}} = 10; \ensuremath{\ensuremath{\beta}} = 10; \ensuremath{\ensuremath{\beta}} & \ensuremath{\ensuremath{\beta}} = 10; \ensuremath{\ensuremath{\beta}} & \ensuremath{\ensuremath{\beta}} = 10; \ensure$
135.4 1	$(1/2)^{-}$		В	
166.07 10	$(5/2)^{-}$		ABC	J^{π} : possible $\pi f_{5/2}$ configuration.
961.21 20	(7/2) ⁻	2.6 ps 3	AB	$T_{1/2}$: deduced by the evaluator from experimental B(E2)(W.u.)=14.9 <i>18</i> in Coulomb excitation (2008St04).

Adopted Levels, Gammas (continued)

⁷³Cu Levels (continued)

E(level)	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments		
1010 14 15	(7/2-)			Configuration= $\pi 2p_{3/2} \otimes 2^+$ in ^{70,72} Ni proposed earlier is consistent with B(E2) values (2008St04). J ^{π} : possible $\pi p_{3/2} \otimes (2^+$ in ⁷² Ni).		
1010.14 15	(1/2)	15 0	A	J ² : possible $\pi_{17/2}$.		
1297.96 22	(7/2)	15 ps 8	AC	$I_{1/2}$: from recoil-distance Doppler-shift (RDDS) method (2015Sa09) in ${}^{238}\text{U}({}^{76}\text{Ge},X\gamma)$. J ^{π} : possible $\pi f_{5/2} \otimes (2^+$ in ${}^{72}\text{Ni})$.		
1489.04 18	$(9/2^{-})$		Α	J^{π} : possible member of $\pi f_{\pi/2}^{-1}$ configuration.		
1708.8? 7			Α	1 1/2 0		
2161.6 14	$(7/2^+)^{\ddagger}$		A			
2386.0 6	$(9/2^+, 11/2^+)^{\ddagger}$		A			

[†] Except for the ground state, all other assignments (from 2001Fr21) are tentative, based on shell-model predictions, and comparisons with the structure of neighboring nuclides. π =– for 135, 166 and 961 levels is from direct excitation from 3/2⁻ ground state in Coulomb excitation.

[‡] Possible member of $\pi p_{3/2} (\nu p_{1/2}^{-1} \otimes \nu g_{9/2}^5)_{5-}$ multiplet.

E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult.	α^{\ddagger}	Comments
135.4	(1/2) ⁻	135.4 1	100	0.0	3/2-	[M1+E2]	0.11 9	$\begin{array}{l} \alpha(\text{K}) = 0.10 \ 8; \ \alpha(\text{L}) = 0.011 \ 9; \\ \alpha(\text{M}) = 0.0015 \ 12 \\ \alpha(\text{N}) = 4.\text{E-5} \ 3 \end{array}$
166.07	(5/2) ⁻	166.1 <i>1</i>	100	0.0	3/2-	[M1+E2]	0.05 4	E _γ : from Coulomb excitation. $ \alpha(K)=0.05 4; \alpha(L)=0.005 4; $ $ \alpha(M)=0.0007 5 $ $ \alpha(N)=1.9 \times 10^{-5} 14 $
961.21	(7/2)-	961.2 2	100	0.0	3/2-	[E2]	0.000294 5	$\begin{array}{l} \alpha = 0.000294 \ 5; \ \alpha(\text{K}) = 0.000264 \ 4; \\ \alpha(\text{L}) = 2.62 \times 10^{-5} \ 4; \\ \alpha(\text{M}) = 3.68 \times 10^{-6} \ 6 \\ \alpha(\text{N}) = 1.116 \times 10^{-7} \ 16 \\ \text{B(F2)}(\text{M} \text{R}) = 14 \ 6 \ + 10 \ 15 \end{array}$
1010.14	(7/2 ⁻)	844.2 2	73 8 100 <i>10</i>	166.07	$(5/2)^{-}$			D(E2)(W.U.)=14.0+19-15
1297.96	(7/2 ⁻)	1131.9 2	100 10	166.07	(5/2)-	[M1+E2]	0.000189 14	$\alpha = 0.000189 \ 14; \ \alpha(K) = 0.000168$ 12; \ \alpha(L) = 1.66 \times 10^{-5} \ 12; \ \alpha(M) = 2.33 \times 10^{-6} \ 17 \ \alpha(N) = 7.1 \times 10^{-8} \ 5; \ \alpha(IPF) = 1.8 \times 10^{-6} \ 4
1489.04 1708.8?	(9/2 ⁻)	478.9 <i>1</i> 1542.2 <i>10</i>	100 100	1010.14 166.07	$(7/2^{-})$ $(5/2)^{-}$			
2161.6 2386.0	$(7/2^+)$ $(9/2^+, 11/2^+)$	1995.5 <i>14</i> 676.9 7 1088.2 6	100 100 22 76 22	166.07 1708.8? 1297.96	$(5/2)^{-}$ $(7/2^{-})$			

[†] From ⁷³Ni β^- decay, unless otherwise noted.

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

γ ⁽⁷³Cu)

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

⁷³₂₉Cu₄₄