Adopted Levels

History			
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 158, 1 (2019)	16-May-2019

 $Q(\beta^{-})=12690 SY; S(n)=5290 SY; S(p)=16280 SY; Q(\alpha)=-15070 SY$ 2017Wa10

Estimated uncertainties (2017Wa10): 400 for $Q(\beta^{-})$, 570 for S(n) and $Q(\alpha)$, and 640 for S(p).

 $S(2n)=9190\ 610$, $S(2p)=36430\ 640$, $Q(\beta^-n)=8740\ 400$ (syst, 2017Wa10). $Q(\beta^-2n)=1845\ 400$ (syst, deduced by evaluators from $Q(\beta^-)$ and S(2n) values in 2017Wa10).

1995En07, 1997Be70: ⁷³Co identified in ⁹Be(²³⁸U,F) E=750 MeV/nucleon reaction; measured production cross section, residuals fission yields. Fully-stripped fission product separation, magnetic rigidity, trajectory, energy deposit, tof method.

- 2010Ho12: ${}^{9}\text{Be}({}^{86}\text{Kr},\text{X})$ E=140 MeV/nucleon; fully-ionized ${}^{86}\text{Kr}$ beam, A1900 fragment separator at NSCL facility using B ρ - Δ E-B ρ method. After separation, the mixed beam was implanted into the NSCL β -counting system (BCS) consisting of stacks of Si PIN detectors, a double-sided Si strip detector (DSSD) for implantation of ions, and six single-sided Si strip detectors (SSSD) followed by two Si PIN diodes. The identification of each implanted event was made from energy loss, time-of-flight information and magnetic rigidity. The implantation detector measured time and position of ion implantations and β decays. Neutrons were detected with NERO detector. Measured β and β n-correlated events with ion implants; half-life of ⁷³Co and delayed-neutron emission probability. A total of 420 implants were detected, and four correlated β n coincidences were observed.
- 2011Da08: ⁷³Co produced in the fragmentation of 57.8 MeV/nucleon ⁸⁶Kr beam impinged on 50 mg/cm² thick tantalum target using LISE-2000 spectrometer at GANIL facility. Detector system included a three-element Si-detector telescope containing a double-sided silicon-strip detector (DSSSD) backed by a Si(Li) detector and surrounded by four clover type EXOGAM Ge detectors. Reaction products identified by mass, atomic number, charge, energy loss and time of flight. Measured half-life of ⁷³Co decay.
- 2012Ra10 (also 2005Ma95): ⁷³Co produced by fragmentation of ⁸⁶Kr beam at 140 MeV/nucleon with a ⁹Be target at NSCL facility followed by fragment separation using A1900 fragment separator. Particle identification by energy loss and time-of-flight techniques. The ions were implanted in double-sided silicon strip (DSSD) detectors for fragment β detection. SeGA gamma-detector array containing 16 HPGe detectors was used for E γ , I γ , $\gamma\gamma$, $\beta\gamma$ coin, ion- β correlations and isotopic half-life measurements. Detailed shell-model calculations using NR78 residual interaction.

Additional information 1.

2014Xu07 (also 2014XuZZ thesis): ⁷³Co nuclide produced in ⁹Be(²³⁸U,F) reaction with ²³⁸U⁸⁶⁺ beam of 345 MeV/nucleon produced at the RIKEN accelerator complex. Identification of ⁷³Co nuclei was made on the basis of magnetic rigidity, time-of-flight and energy loss of the fragments (Δ E-B ρ -tof method) using BigRIPS fragment separator and ZeroDegree Spectrometer (ZDS) at RIBF-RIKEN facility. Isotopic yield measured based on A/Q spectrum and Z versus A/Q plot. Measured heavy fragments, β and γ spectra using wide-range active silicon strip stopper array (WAS3ABi) for beta and ion detection, and EUROBALL-RIKEN Cluster array for γ detection. Decay curves were obtained from time differences between implantation and correlated β decays. See also 2015BeZR conference report for production of ⁷³Co.

⁷³Co Levels

E(level)	T _{1/2}	Comments	
0	40.7 ms <i>13</i>	 %β⁻=100; %β⁻n<22 8 (2012Ra10); %β⁻2n=? %β⁻n: measured value is <22 8 (2012Ra10) based on absolute intensity of 1095γ in ⁷²Ni from the beta-delayed neutron decay of ⁷³Co; earlier value from this group was >9 4 (2005Ma95). Other measurement: %β⁻n<7.9 (2010Ho12). In a recent study carried out at RIBF-RIKEN by 2016Mo07, eight γ rays from the β⁻n decay of ⁷³Co to ⁷²Ni were detected in coincidence mode (see Fig. 4 in the paper). Theoretical T_{1/2}=19.0 ms, %β⁻n=9, %β⁻2n=0 (2019Mo01). Theoretical T_{1/2}=97.5 ms, %β⁻n=5.8, %β⁻2n=0.1 (2016Ma12). The observed 40.7-ms activity is assumed to correspond to the ground state of ⁷³Co. J^π: 7/2⁻ from systematic trend (2017Au03). Also Ω_{proton}=7/2⁻ in theoretical calculations (2019Mo01). T_{1/2}: weighted average of 40.4 ms <i>13</i> (2014Xu07), 42 ms <i>3</i> (2012Ra10), 41 ms <i>4</i> (2011Da08,2004Sa59), and 41 ms 6 (2010Ho12). 2014Xu07 (also 2014XuZZ) T_{1/2} measurement: βγ-coin decay curve from time difference between implantation and correlated β decays. 	

Continued on next page (footnotes at end of table)

Adopted Levels (continued)

⁷³Co Levels (continued)

$E(level) = T_{1/2}$

Comments

- 2012Ra10 T_{1/2} measurement: time distribution of all β -gated γ events. Other values: 40 ms 9 and 54 ms 9 from γ decay curves for 239.2 γ and 774.7 γ , respectively.
- 2011Da08, 2004Sa59 $T_{1/2}$ measurement: time correlation between implantation and β -ray events in the DSSSD. Fitting procedure included five parameters: β -detection efficiency, background rate, mother, daughter and granddaughter half-lives.
- 2010Ho12 $T_{1/2}$ measurement: time sequence of decay type events correlated with the implanted nuclei of ⁷³Co in Si detectors. The authors used method of maximum likelihood analysis which required, as input parameters, values of β -detection efficiency, background, half-lives of daughter and granddaughter nuclei and experimental or theoretical values of $\%\beta$ ⁻n of all nuclei involved.</sup>