⁷³Se ε decay (39.8 min) 1980Te01

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 158, 1 (2019)	16-May-2019

Parent: ⁷³Se: E=25.71 4; $J^{\pi}=3/2^{-}$; $T_{1/2}=39.8 \text{ min } 17$; $Q(\varepsilon)=2725 7$; $\%\varepsilon+\%\beta^{+}$ decay=27.4 3

⁷³Se-E, J^{π} , $T_{1/2}$: From ⁷³Se Adopted Levels.

⁷³Se-Q(ε): From 2017Wa10.

⁷³Se- $\%\varepsilon + \%\beta^+$ decay: $\%\varepsilon + \%\beta^+ = 27.4$ 3 for decay of ⁷³Se (39.8 min) from ⁷³Se Adopted Levels.

1980Te01 (also 1978TeZY): measured $E\gamma$, $I\gamma$, $\gamma\gamma$.

γ, *γγ*: 1970Me20 (also 1970MeZZ), 1969Ma21. Others: 1970Mu02, 1969Mu03, 1969Ba34, 1968Mu08, 1968At04, 1968Ak03, 1967Ra08, 1960Ri09, 1960Ku06.

ce: 1971Vo10, 1969Ko25, 1968Mu08.

 β^+ endpoint energies: 1968Ak03, 1960Ku06, 1960Ri09.

 $\beta\gamma$ coin: 1968Ak03.

 $(\gamma^{\pm})(\gamma)$ coin: 1960Ri09.

Xγ coin: 1969Ko25.

Isomer branching: 1969Mu03, 1969Ma21.

T_{1/2}(⁷³Se isomer): 1976Bo19, 1969Ma21, 1970Me20, 1969Mu03, 1968Ak03, 1960Ri09.

The decay scheme is based on energy sums and $\gamma\gamma$ -coin data of 1980Te01, 1970Me20 and 1969Ma21.

⁷³As Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\ddagger}$
0.0	3/2-	80.30 d 6	850.18 18	(5/2)-	
67.09 7	$5/2^{-}$	4.95 ns 7	1077.57 4	$(3/2)^{-}$	
84.19 <i>4</i>	$(1/2)^{-}$		1086.69 5	5/2-	0.28 ps +28-12
253.84 4	$(1/2)^{-}$		1188.72 10	$(3/2^{-})$	-
393.39 5	$3/2^{-}$		1299.41 9	$(1/2^{-}, 3/2)$	
509.74 15	$(5/2)^+$		1302.05 6	$(5/2^{-})$	
574.43 6	$(1/2)^{-}$		1972.92 <i>11</i>	$(1/2^{-}, 3/2, 5/2^{-})$	
577.6 <i>3</i>	$5/2^{-}$		1982.42 <i>13</i>	$(1/2, 3/2, 5/2^{-})$	
655.36 6	$3/2^{-}$		2211.54 19	$(5/2)^{-}$	
769.61 10	$5/2^{-}$		2484.63 10	$(3/2^{-})$	

[†] From least-squares fit to $E\gamma$ data. Reduced $\chi^2=1.6$ is within the critical χ^2 .

[‡] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\beta^+$ ‡	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(266 7)	2484.63		0.0111 15	5.9 1	0.0111 15	εK=0.8733 3; εL=0.10621 21; εM+=0.02045 5
(539 7)	2211.54		0.0066 17	6.8 1	0.0066 17	εK=0.8779; εL=0.10248 5; εM+=0.01964 1
(768 7)	1982.42		0.0125 16	6.8 1	0.0125 16	εK=0.8792; εL=0.10144 3; εM+=0.019408 5
(778 7)	1972.92		0.0078 11	7.0 1	0.0078 11	εK=0.8792; εL=0.10141 3; εM+=0.019402 5
(1449 7)	1302.05	0.0044 5	0.100 9	6.45 4	0.104 9	av Eβ=186.4 30; εK=0.8435 22; εL=0.0961 3; εM+=0.01835 5
(1451 7)	1299.41	0.0049 6	0.108 11	6.41 5	0.113 12	av E β =187.5 30; ϵ K=0.8427 23; ϵ L=0.0960 3; ϵ M+=0.01834 5
(1562 7)	1188.72	0.0027 4	0.026 4	7.1 1	0.029 4	av E β =234.4 30; ϵ K=0.798 4; ϵ L=0.0908 4; ϵ M+=0.01734 8
(1664 7)	1086.69	0.037 4	0.191 18	6.29 5	0.228 21	av Eβ=277.9 30; εK=0.739 5; εL=0.0841 6; εM+=0.01605 10
(1673 7)	1077.57	0.13 1	0.65 6	5.76 5	0.78 7	av E β =281.8 30; ε K=0.733 5; ε L=0.0834 6;

Continued on next page (footnotes at end of table)

$^{73}\mathbf{Se}\,\varepsilon\,\mathbf{decay}$ (39.8 min) **1980Te01** (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Iβ ⁺ ‡	Ie‡	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(1901 7)	850.18	0.097 9	0.174 16	6.44 5	0.271 25	εM +=0.01592 <i>11</i> av E β =380.1 <i>31</i> ; εK =0.564 <i>6</i> ; εL =0.0640 <i>7</i> ; εM +=0.01223 <i>12</i>
(1981 7)	769.61	0.104 9	0.138 12	6.58 <i>5</i>	0.242 21	av $E\beta$ =415.3 31; ε K=0.502 6; ε L=0.0570 6; ε M+=0.01088
(2095 7)	655.36	0.97 8	0.88 8	5.82 5	1.85 16	av $E\beta$ =465.6 31; ε K=0.421 5; ε L=0.0477 6; ε M+=0.00911
(2173 7)	577.6	0.57 5	0.42 4	6.18 5	0.99 9	av $E\beta$ =500.0 32; ε K=0.371 5; ε L=0.0421 5; ε M+=0.00803
(2176 7)	574.43	0.80 7	0.57 5	6.04 5	1.37 12	av $E\beta$ =501.4 31; ε K=0.369 5; ε L=0.0419 5; ε M+=0.00799
(2241 7)	509.74	0.090 8	0.054 5	7.09 4	0.144 12	av $E\beta$ =530.2 32; ε K=0.332 4; ε L=0.0376 5; ε M+=0.00718
(2357 7)	393.39	0.84 8	0.38 <i>3</i>	6.29 5	1.22 11	av $E\beta$ =582.2 32; ε K=0.274 4; ε L=0.0310 4; ε M+=0.00592
(2497 7)	253.84	0.05 3	0.01 1	7.8 <i>3</i>	0.06 4	av $E\beta$ =645.0 32; ε K=0.2178 25; ε L=0.0247 3; ε M+=0.00471 6
(2667 7)	84.19	1.26 14	0.29 3	6.51 5	1.55 17	av $E\beta$ =722.0 32; ε K=0.1665 19; ε L=0.01884 21; ε M+=0.00360 4
(2684 7)	67.09	2.4 3	0.55 7	6.24 6	3.0 4	av $E\beta$ =729.8 32; ϵ K=0.1622 18; ϵ L=0.01835 20; ϵ M = 0.00350 4
2780 60	0.0	12.8 9	2.56 19	5.60 4	15.4 11	av $E\beta$ =760.4 32; ε K=0.1464 16; ε L=0.01656 18; ε M+=0.00316 4

[†] From I(γ +ce) imbalances. 39.8-min decay is separated from 7.15-h decay by γ (t). [‡] Absolute intensity per 100 decays.

 $\gamma(^{73}\mathrm{As})$

Iy normalization: Deduced from measured annihilation intensity and theoretical ε/β^+ ratios.

The $\alpha(K)$ exp and $\alpha(L)$ exp are from ce intensities in 1971Vo10, assuming mult(84γ)=M1, and $\alpha(K)(84\gamma)$ =0.1273. α values in 1971Vo10 are normalized to $\alpha(K)(84\gamma)$ =0.131.

Intensity of γ^{\pm} radiation intensity (relative to 100 for 253.7 γ)=1713 *156*, unweighted average of 1680 200 (1969Ma21), 1460 *146* (1970Me20) and 2000 *100* (1980Te01).

E_{γ}	$I_{\gamma}^{\&}$	E_i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{a}	Comments
67.07 10	110 9	67.09	5/2-	0.0	3/2-	M1(+E2)	-0.001 15	0.272	$\alpha(K)=0.241$ 4; $\alpha(L)=0.0264$ 4; $\alpha(M)=0.00403$ 7 $\alpha(N)=0.000303$ 5
84.0.7	86.4	84 19	$(1/2)^{-}$	0.0	3/2-	(M1)		0 1451	I _y : 1969Mu03 have separated the 39.8-min and 7.15-h components. $\alpha(K) = 0.1288$ /9: $\alpha(L) = 0.01403$ 21: $\alpha(M) = 0.00214$ 3
04.01	00 4	04.19	(1/2)	0.0	572	(1111)		0.1451	$\alpha(N)=0.0001614\ 24$ Mult.: K/(L+M)=5.9 11; $\alpha(L+)\exp+\alpha(M)\exp=0.022\ 5.$
120 47 9	4 90 14	202.20	2/2-	052.94	(1/2) =	M1 - E2	0.25.10	0.050.12	Additional information 1.
139.47 8	4.82 14	393.39	3/2	253.84	(1/2)	MI+E2	0.35 10	0.058 12	$\alpha(\mathbf{K}) = 0.051 \ 10$ $\alpha(\mathbf{K}) = 0.051 \ 10$; $\alpha(\mathbf{L}) = 0.0058 \ 13$; $\alpha(\mathbf{M}) = 0.00088 \ 19$
									$\alpha(N) = 6.4 \times 10^{-5} \ 13$
									Additional information 3.
169.72 6	2.85 24	253.84	$(1/2)^{-}$	84.19	$(1/2)^{-}$	[M1]		0.0220	$\alpha(K)=0.0195 \ 3; \ \alpha(L)=0.00209 \ 3; \ \alpha(M)=0.000319 \ 5$
181.06.7	10 / /	571 13	$(1/2)^{-}$	303 30	3/2-	M1 + E2	0.40.8	0.028 /	$\alpha(N) = 2.41 \times 10^{-5} 4$ $\alpha(K) = 0.025 3$
101.00 /	17.4 4	574.45	(1/2)	595.59	5/2	W11+L2	0.40 0	0.028 4	$\alpha(K)=0.025 3$; $\alpha(L)=0.0027 4$; $\alpha(M)=0.00042 6$
									$\alpha(N)=3.1\times10^{-5}$ 4
									Additional information 6.
253.70 7	100 1	253.84	$(1/2)^{-}$	0.0	3/2-	M1+E2	0.33 6	0.0096 6	$\alpha(K) \exp[-0.0085.6]$
									$\alpha(\mathbf{K})=0.0085\ 0;\ \alpha(\mathbf{L})=0.00091\ 0;\ \alpha(\mathbf{M})=0.000139\ 10$ $\alpha(\mathbf{N})=1.05\times10^{-5}\ 7$
									Additional information 2.
262.01 7	7.12 17	655.36	$3/2^{-}$	393.39	3/2-	M1+E2	0.6 2	0.0113 20	α (K)exp=0.0101 <i>16</i>
									$\alpha(K)=0.0100 \ 17; \ \alpha(L)=0.00109 \ 20; \ \alpha(M)=0.00017 \ 3$
									$\alpha(N) = 1.23 \times 10^{-5} 21$
309 3 4	7 00 13	303 30	3/2-	84 19	$(1/2)^{-}$	M1+F2	124	0.0093.16	Additional information 9. $\alpha(K) \exp[=0.0083/15]$
507.5 1	7.00 15	575.57	5/2	01.17	(1/2)	1011 122	1.2 /	0.0095 10	$\alpha(K)=0.0083 \ 14; \ \alpha(L)=0.00090 \ 16; \ \alpha(M)=0.000137 \ 23$
									$\alpha(N) = 1.02 \times 10^{-5} 17$
			(1 (2) -		(1 (2) -				Additional information 4.
320.53 8	34.6 4	574.43	$(1/2)^{-}$	253.84	$(1/2)^{-}$	M1		0.00444	$\alpha(K) \exp = 0.0048.5$
									$\alpha(\mathbf{K}) = 0.00396 \ 6; \ \alpha(\mathbf{L}) = 0.000416 \ 6; \ \alpha(\mathbf{M}) = 6.35 \times 10^{-5} \ 9$
									Mult.: α (K)exp gives M1(+E2) with δ <0.55, but ΔJ^{π} consistent

ω

 $^{73}_{33}\mathrm{As}_{40}$ -3

γ ⁽⁷³ As) (continued)									
E_{γ}	Iγ ^{&}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\#}$	α^{a}	Comments	
393.43 7	69.0 7	393.39	3/2-	0.0 3/2-	M1+E2	1.0 3	0.0041 5	with M1. Additional information 7. $\alpha(K)\exp=0.0037 \ 4$ $\alpha(K)=0.0037 \ 5; \ \alpha(L)=0.00039 \ 5;$ $\alpha(M)=5.9\times10^{-5} \ 8$	
401.47 7	53.0 5	655.36	3/2-	253.84 (1/2) ⁻ M1+E2	1.0 3	0.0039 5	$\alpha(N)=4.5\times10^{-6} 6$ Additional information 5. $\alpha(K)\exp=0.0034 5$ $\alpha(K)=0.0034 4; \alpha(L)=0.00037 5;$ $\alpha(M)=5.6\times10^{-5} 7$	
442.3 4	1.11 7	509.74	(5/2)+	67.09 5/2-	E1		1.04×10 ⁻³	$\alpha(N)=4.2\times10^{-6} 5$ Additional information 10. $\alpha(K)=0.000930 \ 14; \ \alpha(L)=9.59\times10^{-5} \ 14;$ $\alpha(M)=1.460\times10^{-5} \ 21$ $\alpha(N)=1.108\times10^{-6} \ 16$	
490.24 <i>17</i> ≈510 [@] 570.96 27	5.62 <i>14</i> ≈5.9 10.28 <i>29</i>	574.43 509.74 655.36	$(1/2)^-$ $(5/2)^+$ $3/2^-$	84.19 (1/2 0.0 3/2 ⁻ 84.19 (1/2)-)-			Ice(K)=11.3 <i>13</i> relative to Ice(K)=100 for 254 γ . α (K)exp=0.0023 <i>15</i> Additional information 11.	
577.63 27	42.1 6	577.6	5/2-	0.0 3/2-	M1+E2	+0.5 +5-2	0.00123 <i>16</i>	$\alpha(K)\exp=0.0022 5$ $\alpha(K)=0.00109 15; \ \alpha(L)=0.000114 16;$ $\alpha(M)=1.74\times10^{-5} 24$ $\alpha(N)=1.32\times10^{-6} 18$ Additional information 8. Mult.: from Adopted Gammas. $\alpha(K)\exp$ is larger than that for E2 or M1, but marginally agrees with E2.	
588.28 17 643.9 3 646.7 3 655.30 14 693.2 4 702.58 23 702.68 23	3.7 2 0.50 4 0.04 2 5.04 7 0.92 4 3.89 6	655.36 1299.41 1302.05 655.36 1086.69 769.61	$3/2^{-}$ (1/2 ⁻ ,3/2) (5/2 ⁻) 3/2 ⁻ 5/2 ⁻ 5/2 ⁻ (1/2 ⁻ ,2/2)	67.09 5/2 655.36 3/2 655.36 3/2 0.0 3/2 393.39 3/2 67.09 5/2	D+Q				
724.80 <i>12</i> 769.59 <i>10</i>	2.00 6 6.39 <i>14</i>	769.61	(1/2, 3/2) $5/2^{-}$	5/4.43 (1/2 0.0 3/2 ⁻	M1(+E2)	<2.0	0.00065 6	$\begin{array}{l} \alpha(\mathrm{K}) = 0.00058 \ 6; \ \alpha(\mathrm{L}) = 6.1 \times 10^{-5} \ 6; \\ \alpha(\mathrm{M}) = 9.2 \times 10^{-6} \ 9 \\ \alpha(\mathrm{N}) = 7.0 \times 10^{-7} \ 7 \end{array}$	
792.48 22 823.68 8 833.09 <i>10</i> 850.17 <i>18</i>	0.73 6 4.62 26 2.32 21 11.5 4	1302.05 1077.57 1086.69 850.18	$(5/2^{-})$ $(3/2)^{-}$ $5/2^{-}$ $(5/2)^{-}$	509.74 (5/2 253.84 (1/2 253.84 (1/2 0.0 3/2 ⁻)-)- M1+E2	+0.19 +19-17	4.86×10 ⁻⁴ 11	α (K)=0.000434 <i>10</i> ; α (L)=4.47×10 ⁻⁵ <i>11</i> ;	

4

From ENSDF

L

				⁷³ Se	ε ε decay	(39.8 min) 1980Te01 (continued)	
						γ ⁽⁷³ As) (continued)	
Eγ	Iγ ^{&}	E _i (level)	\mathbf{J}_i^π	E_f	${ m J}_f^\pi$		Comments
						$\alpha(M) = 6.82 \times 10^{-6} \ 16$	
X060 16 24	0.05.2					$\alpha(N) = 5.22 \times 10^{-1} 12$	
008 46 10	$0.03\ 2$	1302.05	$(5/2^{-})$	303 30	3/2-		
934.90 15	0.88 3	1188.72	$(3/2^{-})$	253.84	$(1/2)^{-}$		
993.28 6	3.22 6	1077.57	$(3/2)^{-}$	84.19	$(1/2)^{-}$		
1002.38 6	2.79 6	1086.69	5/2-	84.19	$(1/2)^{-}$		
1010.69 25	0.32 20	1077.57	$(3/2)^{-}$	67.09	5/2-		
1019.54 12	2.35 5	1086.69	5/2-	67.09	$5/2^{-}$		
1045.58 22	0.45 26	1299.41	$(1/2^{-},3/2)$	253.84	$(1/2)^{-}$		
1077.64 5	25.0 3	1077.57	$(3/2)^{-}$	0.0	$3/2^{-}$		
1086.78 8	1.44 30	1086.69	5/2	0.0	3/2		
1125.5 6	0.14 5	2211.54	$(5/2)^{-}$	1086.69	$5/2^{-}$		
1133.4 0	0.09 4	2211.34 1188 72	(3/2) $(3/2^{-})$	10/7.57	(3/2) $3/2^{-}$		
x1209.96.24	0.30 10	1100.72	(3/2)	0.0	5/2		
1215.80 24	0.79 7	1299.41	$(1/2^{-}.3/2)$	84.19	$(1/2)^{-}$		
1232.40 19	1.06 5	1299.41	$(1/2^{-},3/2)$	67.09	5/2-		
1302.04 6	2.75 5	1302.05	(5/2 ⁻)	0.0	3/2-		
1326.48 28	0.11 3	1982.42	$(1/2, 3/2, 5/2^{-})$	655.36	3/2-		
x1395.26 <i>19</i>	0.09 2	2404 62	(2/2-)	1077.57	(2.12) -		
1407.29 29	0.06 2	2484.63	$(3/2^{-})$	1077.57	$(3/2)^{-}$		
1538.09 17	0.15 2	1000 10		202.20	2/2-		
1588.5 12	0.14 2	1982.42	(1/2,3/2,5/2)	393.39	3/2		
x171114	0.00 2						
1719.1 4	0.16 2	1972.92	$(1/2^{-}, 3/2, 5/2^{-})$	253.84	$(1/2)^{-}$		
1888 74 14	$0.09^{\ddagger}2$	1972.92	$(1/2^{-} 3/2 5/2^{-})$	84 19	$(1/2)^{-}$		
1898.89 23	0.06 3	1982.42	$(1/2, 3/2, 5/2^{-})$	84.19	$(1/2)^{-}$		
1905.74 17	0.08 2	1972.92	$(1/2^-, 3/2, 5/2^-)$	67.09	5/2-		
1910.33 <i>17</i>	0.07 2	2484.63	$(3/2^{-})$	574.43	$(1/2)^{-}$		
1974.67 18	0.18 [‡] 2	2484.63	$(3/2^{-})$	509.74	$(5/2)^+$		
1982.24 17	0.22 1	1982.42	$(1/2, 3/2, 5/2^{-})$	0.0	3/2-		
2090.7 3	0.08 2	2484.63	$(3/2^{-})$	393.39	3/2-		
2127.4 <i>4</i>	0.02 1	2211.54	$(5/2)^{-}$	84.19	$(1/2)^{-}$		
"2135.0 <i>3</i> 2144 38 23	0.03 2 0.03 2	2211 54	$(5/2)^{-}$	67.00	5/2-		
2400 33 26	$0.03\ 2$ 0.03 2	2484.63	(3/2) $(3/2^{-})$	84 10	$(1/2)^{-}$		
x2425.7 5	0.05 2	2707.03	(3/2)	07.19	(1/2)		
2484.78 21	0.05 2	2484.63	$(3/2^{-})$	0.0	3/2-		

From ENSDF

 $^{73}_{33}\mathrm{As}_{40}$ -5

L

 $\gamma(^{73}As)$ (continued)

[†] Possibly doublet.

[‡] Corrected for contamination from ⁷³Se ε decay (7.1 h).

[#] From Adopted Gammas. The adopted values are based on ce data (1971Vo10) given under comments from this study where available.

[@] Not resolved from annihilation radiation. I γ calculated from relative branching in ⁷³Se ε decay (7.15 h).

[&] For absolute intensity per 100 decays, multiply by 0.0236 19.

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

L

 $L^{-0t}SV_{\epsilon L}^{\epsilon \epsilon}$

 $\mathcal{L}^{-0\dagger}s A_{\mathcal{E}\mathcal{E}}^{\mathfrak{E}\mathcal{E}}$