_

Adopted Levels, Gammas

				Hist	ory							
	_	Туре	Auth	or	Citation	Literature Cutoff Date						
	F	ull Evaluation	Balraj Singh ar	nd Jun Chen	NDS 158, 1 (2019)	16-May-2019						
$Q(\beta^{-}) = -2725 7; S$ S(2n)=19202 6, S Additional inform 2003A112 (also 19 vibrational mo	S(n)=1079 (2p)=1539 ation 1. 295A114): odel. Com	94 6; S(p)=565 92 4 (2017Wath theoretical integrations are all	56 4; $Q(\alpha) = -4050$ 10). erpretation and callso made with interval.) <i>4</i> 2017W alculations of eracting boson	a10 level scheme based on ^a n-fermion model (IBFM	U(6/12) supersymmetric model in						
				⁷³ As I	Levels							
			Cr	oss Reference	e (XREF) Flags							
		A 73 Se ε B 73 Se ε C 64 Ni(12 D 71 Ga(α	decay (7.15 h) decay (39.8 min) C,p2nγ) ,2nγ)	$ \begin{array}{c} \mathbf{E} & ^{72} \mathrm{Ge} \\ \mathbf{F} & ^{72} \mathrm{Ge} \\ \mathbf{G} & ^{72} \mathrm{Ge} \\ \mathbf{H} & ^{73} \mathrm{Ge} \end{array} $	(p,γ) $(p,\gamma),(p,p),(p,p'\gamma)$ IAS $(^{3}\text{He,d})$ (p,n)	I 73 Ge(p,n γ) J 74 Se(d, ³ He) K 75 As(p,t)						
E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	XREF		C	omments						
0.0	3/2-	80.30 d 6	ABCDE GHIJK	% ε =100 J ^{π} : L(p,t)=0 T _{1/2} : from 1	from 3/2 ⁻ target. 972Em01. Other: 62 d .	24 (2008Li25).						
67.035 [#] 9	5/2-	4.95 ns 7	ABCDE GHIJ	BCDE GHIJ μ =+1.63 <i>10</i> (1963Bo26,2014StZZ) Q=+0.356 <i>12</i> (1992Sc21,2016St14) J ^π : L(³ He,d)=3, M1(+E2) γ to 3/2 ⁻ . T _{1/2} : γ (t) in ⁷³ Se ε decay (7.15 h). μ : TDPAC (1963Bo26,1975Re06)). O: TDPAC (1902Sc21)								
84.32 <i>3</i>	(1/2)-		B E GHIJ	J^{π} : L(d, ³ He) support 1/2	=1; theoretical structure 2.	calculations by 2003Al12 and $\sigma(p,n\gamma)$						
253.980 18	(1/2)-		B DE G IJK	J ^{π} : L(³ He,d) 1/2.	=1; 515.84γ E2 from 5/	'2 ⁻ ; $\sigma(\mathbf{p},\mathbf{t})$ and $\sigma(\mathbf{p},\mathbf{n}\gamma)$ also suggests						
393.422 <i>13</i> 427.902 ^{&} 21	3/2 ⁻ 9/2 ⁺	5.7 μs 2	B DE GHIJK J^{π} : L(³ He,d)=1; L(p,t)=0(+2) from 3/2 ⁻ target; $\sigma(p,n\gamma)$ also supports 3/2 A CDE GHIJ J^{π} : L(³ He,d)=1; L(p,t)=0(+2) from 3/2 ⁻ target; $\sigma(p,n\gamma)$ also supports 3/2 $\mu=+5.234$ 14 (1970Be23,1972ReZN,2014StZZ) J^{π} : L(³ He,d)=4, M2+E3 γ to 5/2 ⁻ . T _{1/2} : weighted average of 5.5 μ s 3 from ⁷³ Se ε decay (7.15 h), 5.7 μ s 2 from ⁷² Ge(d,n γ) and ⁷⁴ Ge(p,2n γ) (both included in (p,n γ) dataset), 6.0 μ s 12 from (α ,2n γ). μ : stroboscopic perturbed angular distribution (PAD) (1970Be23). Other:									
510.054 <i>17</i> 574.55 <i>3</i> 577.894 <i>16</i>	$(5/2)^+$ $(1/2)^-$ $5/2^-$		AB DE GHIJ J^{π} : L(d, ³ He)=2; $\sigma(p,n\gamma)$ suggests 5/2. B DE hIjk J^{π} : 320.58 γ M1 to 1/2 ⁻ ; $\sigma(p,n\gamma)$ suggests 1/2. BCDE GhIjk J^{π} : L(³ He,d)=3; M1+E2 γ to 3/2 ⁻ ; $\sigma(p,n\gamma)$ also favors 5/2 but 7/2 ⁻ in									
628? 5 655.460 19 673.9 4	3/2-		H B DE G IJK E HI	H B DE G IJK J ^{π} : L(p,t)=0 from 3/2 ⁻ target; σ (p,n γ) also supports 3/2. E HI XREF: E(?). J ^{π} : possible γ to (5/2) ⁺ .								
769.821 <i>15</i> 850.515 <i>20</i> 860.541 [@] <i>14</i>	5/2 ⁻ (5/2) ⁻ 7/2 ⁻		G B E GHIJ B E GHI CDE GHIJK	$ \begin{array}{l} J^{n}: \text{ possible } \gamma \text{ to } (5/2)^{+}. \\ \mathbf{G} \\ \mathbf{B} \mathbf{E} \mathbf{G} \\ \mathbf{B} \mathbf{E} \mathbf{G} \\ \mathbf{B} \mathbf{E} \mathbf{G} \\ \mathbf{B} \mathbf{E} \mathbf{G} \\ \mathbf{H} \mathbf{I} \mathbf{J}^{\pi}: \ \mathbf{L}(^{3}\text{He},\text{d}) = 3; \ 769.84\gamma \text{ M1}(+\text{E2}) \text{ to } 3/2^{-}; \ \sigma(\text{p},\text{n}\gamma) \text{ all} \\ \mathbf{J}^{\pi}: \ 850.50\gamma \text{ M1}(+\text{E2}) \text{ to } 3/2^{-}; \ \sigma(\text{p},\text{n}\gamma) \text{ supports } 5/2. \\ \mathbf{CDE} \mathbf{GHIJK} \mathbf{J}^{\pi}: \ \mathbf{L}(\text{p},\text{t}) = 2 \text{ from } 3/2^{-} \text{ target; } \mathbf{L}(\text{d},^{3}\text{He}) = 3 \text{ from } 0^{+}; \ 8^{-} \\ 3/2^{-}; \ \sigma(\text{p},\text{t}) \text{ also supports } 7/2. \end{array} $								

⁷³As Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	XREF	Comments
886.11 5	1/2+		EGIJ	J^{π} : L(d, ³ He)=L(³ He,d)=0 from 0 ⁺ ; $\sigma(p,n\gamma)$ also supports 1/2.
929.13 [#] 16	(9/2 ⁻)		CD	J ^{π} : 862.0 γ Q (Δ J=2) to 5/2 ⁻ ; band assignment.
993.760 12	$(7/2)^{-}$	0.57 ps +26-18	A E HIJK	J^{π} : L(p,t)=2 from 3/2 ⁻ target; $\sigma(p,n\gamma)$ supports 7/2; but 3/2 from $\sigma(p,t)$ is inconsistent
1013.55 5	$(1/2^{-})$		DI	J^{π} : suggested by $\sigma(p,n\gamma)$.
1037.13 ^{&} 3	$(13/2)^+$	8.3 ps 6	A CDE HI	J ^{π} : 609.22 γ E2 (Δ J=2) to 9/2 ⁺ ; band assignment; σ (p,n γ)
				supports 13/2. E(level): 1037 level in (p,γ) with proposed $J^{\pi}=7/2^{-}$ may be a different level.
				$T_{1/2}$: from ⁵⁸ Fe(¹⁸ O,2np γ) by recoil distance (included in (α 2n γ) dataset)
1077.71 5	$(3/2)^{-}$		B E GHIJ	E(level): doublet in (³ He,d) and probably also in (d, ³ He).
				J^{π} : L(³ He,d)=1+3 from 0 ⁺ for a 1073 group and L(d, ³ He)=1
1096 07 4	5/2-	0.09 1.09 10		from 0 ⁺ for a 1081 group; $\sigma(p,n\gamma)$ supports 3/2.
1080.97 4	5/2	0.28 ps +28-12	BEI	$\sigma(p,p\gamma)$ also supports 5/2.
1178.08 7	(9/2 ⁻)		A CDE HI k	XREF: E(?).
1188 75 10	$(3/2^{-})$		D E T k	J^{π} : 1110.91 γ Q ($\Delta J=2$) to 5/2 ⁻ ; but 7/2 ⁻ suggested by $\sigma(p,n\gamma)$.
1216.3 5	$(3/2)^{-}$		EGJ	J^{π} : L(d, ³ He)=L(³ He,d)=1; possible 356 γ to 7/2 ⁻ supports 3/2 ⁻ .
				but 789 γ to 9/2 ⁺ disfavors both 1/2 ⁻ and 3/2 ⁻ .
1217.95 4	$(3/2)^+$		I	J^{π} : 331.92 γ M1(+E2) to 1/2 ⁺ , 707.89 γ M1,E2 to (5/2) ⁺ ;
1221.283 16	$(7/2)^{-}$	0.35 ps +10-8	HI	J^{π} : 643.38 γ M1(+E2) to 5/2 ⁻ ; σ (p,n γ) supports 7/2.
1275.15 7	$(7/2)^+$		A E GHI	J^{π} : 765.12 γ M1+E2 to (5/2) ⁺ , 847.52 γ M1,E2 to 9/2 ⁺ ;
1293.10 9	(11/2)+		A Cd hI	$\sigma(p,n\gamma)$ supports 7/2. E(level): different from 1293.3 level from probable J values and absence of 784 γ in ⁷¹ Ga(α ,2n γ). High $\sigma(p,n)$ in ⁷³ Ge(p,n γ) confirms doublet.
				J^{π} : 865.18 γ M1,E2 to 9/2 ⁺ , 256.20 γ to (13/2) ⁺ ; σ (p,n γ)
1002.25 4	(7/2)+			supports $11/2$.
1293.35 4	$(1/2)^{+}$		A d hI	J [*] : 783.33 γ M1,E2 to (5/2) ⁺ , 865.18 γ D to 9/2 ⁺ ; σ (p,n γ) support 7/2.
1299.35 5	$(1/2^-, 3/2)$		ВЕЗІ	J^{π} : 1232.34 γ to 5/2 ⁻ ; σ (p,n γ) supports (1/2,3/2).
1302.20 7	$(5/2^{-})$		B gIK	XREF: $K(1307)$.
1324.193 24	$(5/2^+)$		E ahI	J^{π} : $\sigma(p,n\gamma)$ supports 5/2; $L({}^{3}\text{He.d})=1+2$ for a 1326 group.
1328.81 9	$(7/2)^+$	0.090 ps 21	A ghI	J^{π} : 900.87 γ M1,E2 to 9/2 ⁺ ; σ (p,n γ) supports 7/2 ⁺ ; possible ε
				feeding from 9/2 ⁺ . But L(³ He,d)=1+2 for a 1326 suggests two levels, one with $J^{\pi}=1/2^{-},3/2^{-}$; the other with $J^{\pi}=3/2^{+},5/2^{+}$.
1344.506 22	$(7/2)^{-}$		E HIJ	J ^{π} : L(d, ³ He)=3; σ (p,n γ) supports 7/2.
1400.9? 10		0.20 == 14.0	E	J^{π} : possible γ to $9/2^+$.
1489.40 20		0.29 ps +14-9	E HI	J^{π} : 979.4 γ to (5/2) ⁺ .
1544 5			EG	
1557.24 9	$(3/2^{-}, 5/2, 7/2^{-})$		HI	J^{π} : γ to $(7/2)^-$; possible γ to $(3/2)^-$.
1388.00 22	(3/2)		дні	component in (³ He,d) most likely corresponds to the 1592 level.
1591.6 8	(3/2)-		Eg JK	J^{π} : L(p,t)=0(+2) from 3/2 ⁻ target; L(d, ³ He)=1.
1612.76 17	5/2-,7/2-	0.20 16 10	E HIJ	J^{π} : L(d, ³ He)=3.
1049./ <i>3</i> 1658.18 [@] 12	(1/2, 3/2, 5/2)	0.30 ps +16-10	CD HI	J ^{**} : 1505.3 γ to (1/2) . I^{π} : 707 Au O (AI=2) to 7/2 ⁻ : hand assignment
1690 5	(11/2)		Н	$J = 1/1.77 Q (\Delta J = 2) to 1/2$, band assignment.

⁷³As Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡	XR	REF	Comments
1706? 5 1715.7 20 1755 5 1761.52 15	(13/2+)		E CD	H H	J ^π : 468.4γ D (ΔJ=1) to (11/2) ⁺ ; 724.4γ possible ΔJ=0 to
1796.5 <i>3</i> 1836				HI K	$(13/2)^+$. J ^{π} : possible γ to $(1/2)^-$.
1850.89 <i>16</i> 1860.8 <i>11</i>	$(9/2)^+$	0.27 ps +10-7	A E E	GHI	J^{π} : L(³ He,d)=4; 813.4 γ to (13/2) ⁺ .
1876.74 <i>20</i> 1903.6 <i>3</i> 1910.12 <i>12</i>	(1/2 to 7/2 ⁻) (1/2 ⁻ to 9/2 ⁻) (9/2 ⁺ ,11/2)	0.065 ps <i>14</i> 0.26 ps <i>6</i>	A	HI HI G	J^{π} : 1483.3 γ to 3/2 ⁻ . J^{π} : 1133.8 γ to 5/2 ⁻ . J^{π} : 1482.29 γ to 9/2 ⁺ and 872.56 γ to (13/2) ⁺ ; possible ε feeding from 9/2 ⁺ .
1949.82 ^{&} 20 1962.87 20 1972.98 <i>11</i>	$(17/2^+)$ (3/2,5/2,7/2) $(1/2^-,3/2,5/2^-)$	0.50 ps +15-12	CD B	HI 9	 J^π: 912.7γ Q(ΔJ=2) to (13/2)⁺; band assignment. J^π: 1452.8γ to (5/2)⁺; possible 873.8γ to 5/2⁻. XREF: g(1971). J^π: γs to 5/2⁻ and (1/2)⁻; possible ε feeding from 3/2⁻. The 1971 5 level in (³He,d) with L=3 could correspond to 1972.98+1975.40+1977.54.
1975.40 <i>11</i>	(7/2,9/2)		A E	g	XREF: g(1971). J^{π} : 1547.45 γ to 9/2 ⁺ and 700.0 γ and 682.25 γ to (7/2) ⁺ , 5887 γ from (1/2 ⁻ ,3/2,5/2 ⁻); possible ε feeding from 9/2 ⁺ . The 1971 5 level in (³ He,d) with L=3 could correspond to 1972.98+1975.40+1977.54.
1977.54 20	(1/2 to 7/2 ⁻)	0.22 ps 6		gHIj	XREF: $g(1971)j(1981)$. J ^{π} : 1584.1 γ to 3/2 ⁻ ; L(³ He,d)=3 for a level at 1971 5; L (d ³ Ha)=1 for 1081 7 level
1982.50 <i>13</i>	(1/2,3/2,5/2 ⁻)		В	j	XREF: j(1981). J^{π} : 1898.89γ to (1/2) ⁻ ; log <i>ft</i> =6.8 from 3/2 ⁻ . L(d, ³ He)=1 for 1981 7 level.
2023 5 2039.62 [#] 12	1/2 ⁺ (13/2 ⁻)		CD	G	 J^π: L(³He,d)=0. E(level): two separate levels around this energy were proposed by 1977He08 in (α,2nγ) from their placements of 1002.6γ and 1110.4γ from different levels with J^π=(15/2⁺) assigned to a second level. However, there is no strong evidence to support the existence of two levels and a recent study by 2015Ra20 in (¹²C,p2nγ) reported that a 1002γ and a 1110γ were from the same level. J^π: 1110.4γ Q (ΔJ=2) to (9/2⁻), 1002.6γ D (ΔJ=0) to (13/2)⁺: hand assignment in (¹²C, p2nγ)
2096 <i>10</i> 2125 <i>3</i> 2136 <i>5</i>	1/2-,3/2-		E	G G J	E(level): from (³ He.d). Other: 2135 10 from (d. ³ He).
2180.66 10	(7/2,9/2+)		A		J ^{π} : L(d, ³ He)=1. J ^{π} : γ 's to 9/2 ⁺ , (5/2) ⁺ and (9/2 ⁻); possible ε feeding from
2211.58 18	(5/2)-		В	G	$9/2^+$. J ^{π} : L(³ He,d)=3; γ 's to 5/2 ⁻ and (1/2) ⁻ ; possible ε feeding from $3/2^-$
2239 5 2311.61 6 2377 5	(7/2,9/2+)		E A	G G	J^{π} : γ 's to $9/2^+$ and $(5/2)^+$; possible ε feeding from $9/2^+$.
2394 5 2415 41 22	3/2+,5/2+		P	G	J^{π} : L(³ He,d)=2.
2415.41 22 2437 5 2461 5	3/2+,5/2+		U	G G	$J^{\pi}: \gamma \text{ to } (11/2)^{\pi}.$ $J^{\pi}: L(^{3}\text{He},d)=2.$

⁷³As Levels (continued)

E(level) [†]	J^{π}	XF	REF	Comments
2475.63 [@] 17	(15/2 ⁻)	CD		J^{π} : 817 γ Q (Δ J=2) to (11/2 ⁻), 436.2 γ D to (13/2 ⁻); band assignment.
2482.82 23	$(7/2, 9/2^+)$	Α		J^{π} : γ 's to $9/2^+$ and $(5/2)^+$; possible ε feeding from $9/2^+$.
2484.77 10	(3/2 ⁻)	В	G	J^{π} : γ' s to $(1/2)^{-}$ and $(5/2)^{+}$; ε feeding from $3/2^{-}$; L(³ He,d)=(1).
2545 5	3/2+,5/2+		G	$J^{\pi}: L({}^{3}\text{He},d)=2.$
2564 5	$(7/2 0/2^{-})$	۵	G	I^{π} : α/s to $0/2^+$ and $5/2^-$: c feeding from $0/2^+$
2504.09 11	(1/2, 3/2)	A	G	$J : y \le 0.5/2$ and $5/2$, ε recommending from $5/2$. $I^{\pi} : I ({}^{3}\text{He d}) = 0$
2622.6 10	1/2	D	J	J^{π} : γ to $(13/2^{-})$.
2633 5			G	
2703 5	$1/2^+ \& (1/2, 3/2)^-$		G	J^{π} : L(³ He,d)=0+1.
2730 5			G	
2/44 5	+		G	$E(1_{aval})$; $L({}^{3}H_{a}d) - 2 + 4$ for a doublet
2023 10 2049 15 # 22	$(17/2^{-})$	CD	G	E(16Ve1). E(He,u)=2+4 for a doublet. $\overline{\pi}$: 808 5a O (AI=2) to (12/2 ⁻); hand assignment
2040.15 25	(17/2) 3/2+5/2+	CD	G	J^{*} . 808.57 Q ($\Delta J = 2$) to (15/2), band assignment. $I^{\pi} \cdot I ({}^{3}\text{He} d) = 2$
2931 15	5/2 ,5/2		G	J : E(110, 0) - 2.
2965.1 ^{&} 3	$(21/2^{+})$	CD		J^{π} : 1015.2 γ O (AJ=2) to (17/2 ⁺): band assignment.
3003 15	(=-/=)	02	G	
3050.4 ^a 3	$(19/2^+)$	CD		J ^{π} : 1100.6 γ D (Δ J=1) to (17/2 ⁺); band assignment.
3087 15			G	
3157 15	1/2+		G	J^{n} : L(³ He,d)=0.
3203 15	5/2-7/2-		G	$I^{\pi} \cdot I ({}^{3}Hed) = 3$
3294.33 24	5/2 ,7/2	D	9	J^{π} : γ to $(15/2^{+})$.
3372.4 [@] 8	$(19/2^{-})$	С		J^{π} : 897 γ Q ($\Delta J=2$) to (15/2 ⁻); band assignment.
3392 15	$(1/2^+)$		G	J^{π} : L(³ He,d)=(0).
3490.6 ^b 7	$(21/2^+)$	С		J^{π} : 1541 γ Q ($\Delta J=2$) to (17/2 ⁺); band assignment.
3532 15	(_)		G	E(level): $L({}^{3}He,d)=(1+3)$ for a doublet.
3610 15			G	
3666 15			G	
3751 2 [#] 11	$(21/2^{-})$	C	G	I^{π} : 903 $_{2}$ (AI-2) to (17/2 ⁻); hand assignment
3791 15	(21/2)	C	G	$J : JOSY Q (\Delta J-2) to (17/2), band assignment.$
3842.2 ^c 11	$(19/2^{-})$	С		J^{π} : 994 γ D ($\Delta J=1$) to (17/2 ⁻); band assignment.
3880 15			G	
3994 15	$(22/2^{+})$	C	G	I_{2}^{T} , 074 0 to (10/2 ⁺) and 1050 D to (21/2 ⁺), hand and
4023.0 7	$(25/2^{+})$	C		J^{*} : 9/4 γ Q to (19/2 ⁺) and 1038 γ D to (21/2 ⁺); band assignment.
4082.9 4	$(25/2)^{*}$	CD	G	J^* : 1117.8 γ Q ($\Delta J=2$) to (21/2 ⁺); band assignment.
4207 13 $4457 4^{(0)} 13$	$(23/2^{-})$	C	U	I^{π} : 1085 γ O (AI-2) to (19/2 ⁻); hand assignment
4470 15	(23/2)	C	G	$\mathbf{J} = 10057 \mathbf{Q} (\Delta \mathbf{J} - \mathbf{Z}) 0 (1772), \text{ outd} assignment.$
4518 15			G	
4586.4 ^b 7	$(25/2^+)$	С		J^{π} : 1621 γ Q ($\Delta J=2$) to (21/2 ⁺); band assignment.
4600 15			G	- 0
4650 15	1/2+		G	J^{π} : L(³ He,d)=0.
4712 15	3/21,5/21		G	J^{n} : L(³ He,d)=2.
4860 15			G	
4870.2 [#] 15	$(25/2^{-})$	С	-	J^{π} : 1119 γ Q ($\Delta J=2$) to (21/2 ⁻): band assignment.
4900 15	7/2+,9/2+	-	G	J^{π} : L(³ He,d)=4.
4952 15	3/2+,5/2+		G	$J^{\pi}: L(^{3}He,d)=2.$
4964.2 ^c 15	(23/2 ⁻)	С	_	J^{π} : 1122 γ to (19/2 ⁻); band assignment.
5010 15			G	

⁷³As Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
5070 <i>15</i> 5118.2 <i>15</i>	1/2+&(3/2,5/2)+	G	E(level): $L(^{3}He,d)=0+2$.
5190 15	$3/2^+, 5/2^+$	G	J^{π} : L(³ He,d)=2.
5278 15	3/2+,5/2+	G	J^{π} : L(³ He,d)=2.
5411.7 ^a 12	$(27/2^+)$	С	J^{π} : 1388 γ to (23/2 ⁺); band assignment.
5411.9 ^{&} 11	$(29/2^+)$	С	J^{π} : 1329 γ Q ($\Delta J=2$) to (25/2 ⁺); band assignment.
5686.4 [@] 16	$(27/2^{-})$	С	J^{π} : 1229 γ Q ($\Delta J=2$) to (23/2 ⁻); band assignment.
5953.4 ^b 13	$(29/2^+)$	С	J^{π} : 1367 γ to (25/2 ⁺); band assignment.
6132.2 [#] 18	$(29/2^{-})$	С	J^{π} : 1262 γ Q ($\Delta J=2$) to (25/2 ⁻); band assignment.
6311.2 ^C 18	$(27/2^{-})$	С	J^{π} : 1347 γ to (23/2 ⁻); band assignment.
6908.9 <mark>&</mark> 15	$(33/2^+)$	С	J ^{π} : 1497 γ Q (Δ J=2) to (29/2 ⁺); band assignment.
7434.2 [#] 21	(33/2 ⁻)	С	J^{π} : 1302 γ Q ($\Delta J=2$) to (29/2 ⁻); band assignment.
7861.1 3	(3/2,5/2)	E	J^{π} : γ 's to $(1/2)^{-}$, $5/2^{-}$ and $(7/2, 9/2)$.
8610.9 ^{&} 18	$(37/2^+)$	С	J^{π} : 1702 to (33/2 ⁺); band assignment.
8788.2 [#] 23	$(37/2^{-})$	С	J^{π} : 1354 to (33/2 ⁻); band assignment.
8994	(5/2)+	F	E(level): other: a doublet at 8890 from (³ He,d) is claimed to be the possible analog of g.s. in ⁷³ Ge. See (³ He,d) for additional levels, which are \approx 80 keV lower than the corresponding IAS reported in ⁷² Ge(p,p'), ⁷² Ge(p, γ) and are not adopted here. J ^{π} : L(p,p')=2; IAS of E=13, 5/2 ⁺ in ⁷³ Ge.
9045		F	J^{π} : IAS of E=65, $3/2^{-}$ in ⁷³ Ge.
9346	$(3/2)^{-}$	F	J^{π} : L(p,p')=1; IAS of E=364, 3/2 ⁻ in ⁷³ Ge.
9375		F	
9489		F	
9543		F	
9043		г F	
9774		F	
9829		F	
9868		F	
9898		F	72
10021	$(3/2)^{-}$	F	J^{π} : L(p,p')=1; IAS of 1043, 3/2 ⁻ in ^{/3} Ge.
10095		F	
10144		г F	
10272		F	
10588	$1/2^{+}$	F	J^{π} : L(p,p')=0; IAS of 1599 in ⁷³ Ge.
10617	$(5/2)^+$	F	J^{π} : L(p,p')=2; IAS of 1623, 5/2 ⁺ in ⁷³ Ge.
10686	$1/2^{+}$	F	J^{π} : L(p,p')=0; IAS of 1742 in ⁷³ Ge.

 † From least-squares fit to Ey data.

[‡] From DSAM in (p,n γ), unless otherwise stated.

[#] Band(A): Favored band based on $5/2^-, \alpha = +1/2$. At low spins, configuration $=\pi(2p_{3/2} lf_{5/2} 2p_{1/2})^5$. First band crossing at $\hbar\omega \approx 0.45$ MeV due to pair of $g_{9/2}$ neutrons, second possible band crossing at $\hbar\omega \approx 0.6$ MeV due to a pair of $g_{9/2}$ protons; 3qp configuration after first crossing and 5qp configuration after second band crossing.

^(a) Band(a): Unfavored band based on 7/2⁻, $\alpha = -1/2$. At low spins, configuration = $\pi (2p_{3/2} lf_{5/2} 2p_{1/2})^5$. First band crossing at $\hbar \omega \approx 0.45$ MeV due to a pair of $g_{9/2}$ neutrons, 3qp configuration after first crossing.

& Band(B): Band built on $\pi g_{9/2}, \alpha = +1/2$. Decoupled (favored) band. At low spins, configuration is $\pi g_{9/2}$, while at higher spins, configuration= $\pi g_{9/2} \otimes v g_{9/2}^2$. Unfavored partner of this band is not seen.

^{*a*} Band(C): Band based on $(19/2^+)$.

⁷³As Levels (continued)

^{*b*} Band(c): Band based on $(21/2^+)$. ^{*c*} Band(D): Band based on $(19/2^-)$.

						Adopted L	evels, Gamm	as (continued	<u>l)</u>
							$\gamma(^{73}\text{As})$		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ	α #	Comments
67.035	5/2-	67.030 10	100	0.0	3/2-	M1(+E2)	-0.001 15	0.272	B(M1)(W.u.)=0.0116 2 α (K)=0.241 4; α (L)=0.0264 4; α (M)=0.00404 6 α (N)=0.000304 5 E _γ : others: 67.07 10 from ⁷³ Se ε decay (7.15 h), 67.07 10
84.32	(1/2)-	84.18 <i>18</i>	100	0.0	3/2-	(M1)		0.1443	from. Additional information 2. Mult., δ : from ce and $\gamma\gamma(\theta)$ data in ⁷³ Se ε decay (7.15 h). $\alpha(K)=0.1281\ 20;\ \alpha(L)=0.01395\ 22;\ \alpha(M)=0.00213\ 4$ $\alpha(N)=0.0001605\ 25$
									E _γ : unweighted average of 84.0 <i>I</i> from ⁷³ Se ε decay (39.8 m) and 84.36 4 from ⁷³ Ge(p,nγ). Mult.: from ce data in ⁷³ Se ε decay (39.8 m).
253.980	(1/2)-	169.69 6	2.86 24	84.32	$(1/2)^{-}$	[M1]		0.0220	$\alpha(K)=0.0196 3; \alpha(L)=0.00209 3; \alpha(M)=0.000319 5 \alpha(N)=2.42\times10^{-5} 4$
									E _γ : weighted average of 169.72 <i>6</i> from ⁷³ Se ε decay (39.8 m) and 169.64 8 from ⁷³ Ge(p,nγ). I _γ : weighted average of 2.85 24 from ⁷³ Se ε decay (39.8 m)
		253.94 12	100 <i>I</i>	0.0	3/2-	M1+E2	0.33 6	0.0096 6	and 2.9.5 from "Ge(p,ny). $\alpha(K)=0.0085$ 6; $\alpha(L)=0.00091$ 6; $\alpha(M)=0.000139$ 9 $\alpha(N)=1.04\times10^{-5}$ 7
									E _{γ} : unweighted average of 253.70 7 from ⁷³ Se ε decay (39.8 m), 254.1 2 from ⁷¹ Ga(α ,2n γ), and 254.02 2 from ⁷³ Ge(p,n γ). L: from ⁷³ Se ε decay (39.8 m)
									Mult., δ : from ce data in ⁷³ Se ε decay (39.8 m). Other: δ =0.22 8 from ce data in (p,n γ). Value from ⁷³ Se ε decay is preferred as level is strongly populated in this decay.
393.422	3/2-	139.45 4	5.2 17	253.980	(1/2)-	M1+E2	0.35 10	0.058 12	$\alpha(K)=0.051 \ 10; \ \alpha(L)=0.0058 \ 13; \ \alpha(M)=0.00088 \ 19 \ \alpha(N)=6.4\times10^{-5} \ 13$
									E _{γ} : weighted average of 139.47 8 from ⁷³ Se ε decay (39.8 m) and 139.44 4 from ⁷³ Ge(p,n γ).
									I _{γ} : unweighted average of 6.99 20 from ⁷³ Se ε decay (39.8 m) and 3.5 14 from ⁷³ Ge(p,n γ).
		309.10 <i>5</i>	10.16 <i>19</i>	84.32	(1/2)-	M1+E2	1.2 4	0.0094 <i>16</i>	Mult.,o: from ce data in ⁷⁻ Se ε decay (39.8 m). $\alpha(K)=0.0083 \ 14; \ \alpha(L)=0.00090 \ 16; \ \alpha(M)=0.000137 \ 23 \ \alpha(N)=1.02\times10^{-5} \ 17 \ E_{\gamma}: other: 309.3 \ 4 \ from \ ^{73}Se \ \varepsilon \ decay (39.8 m).$ $I_{\gamma}: weighted average of 10.14 \ 19 \ from \ ^{73}Se \ \varepsilon \ decay (39.8 m) \ and 11.1 \ 12 \ from \ ^{73}Ge(p,n\gamma).$

 $^{73}_{33}\text{As}_{40}$ -7

						Adopted	Levels, Gam	mas (continue	ed)
							$\gamma(^{73}\text{As})$ (con	tinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	δ	α #	Comments
393.422	3/2-	326.4 ^{&} 393.42 2	<0.6 100.0 <i>10</i>	67.035 0.0	5/2 ⁻ 3/2 ⁻	M1+E2	1.0 3	0.0041 5	$\alpha(K)=0.0037 5; \alpha(L)=0.00039 5; \alpha(M)=5.9\times10^{-5} 8$ $\alpha(N)=4.5\times10^{-6} 6$ E_{γ} : weighted average of 393.43 7 from ⁷³ Se ε decay (39.8 m) and 393.42 2 from ⁷³ Ge(p,n γ). Le: from ⁷³ Se ε decay (39.8 m). Other: 100 11 from
427.902	9/2+	360.86 2	100	67.035	5/2-	M2+E3	-0.035 10	0.01315	(p,nγ). δ: from ce data in ⁷³ Se ε decay. Other: <0.45 from ce data in (p,nγ). B(M2)(W.u.)=0.0502 <i>18</i> ; B(E3)(W.u.)=1.0 +7-5 α (K)=0.01165 <i>17</i> ; α (L)=0.001286 <i>18</i> ; α (M)=0.000197 <i>3</i> α (N)=1.486×10 ⁻⁵ <i>21</i> E _γ : others: 361.2 <i>3</i> from ⁷³ Se ε decay (7.15 h) and 361.1 <i>2</i> from ⁷¹ Ga(α ,2nγ).
		428.3 3	0.080 15	0.0	3/2-	[E3]		0.01353	Mult., δ : from ⁷³ Se ε decay (7.15 h). Other: δ <0.15 from ce data in (p,n γ). B(E3)(W.u.)=0.20 5 α (K)=0.01191 <i>17</i> ; α (L)=0.001392 <i>20</i> ; α (M)=0.000212 <i>3</i> α (N)=1.533×10 ⁻⁵ <i>22</i>
510.054	(5/2)+	116.59 <i>14</i> 443.04 2	2.4 5 19.1 <i>11</i>	393.422 67.035	3/2 ⁻ 5/2 ⁻	E1		1.04×10 ⁻³	$\alpha(K)=0.000926 \ 13; \ \alpha(L)=9.55\times10^{-5} \ 14; \ \alpha(M)=1.454\times10^{-5} \ 21 \ \alpha(N)=1.104\times10^{-6} \ 16 \ E_{\gamma}: \text{ others: } 442.3 \ 3 \ \text{from } ^{73}\text{Se } \varepsilon \ \text{decay } (7.15 \ \text{h}) \ \text{and} \ 442.3 \ 4 \ \text{from } ^{73}\text{Se } \varepsilon \ \text{decay } (39.8 \ \text{m}).$ $I_{\gamma}: \text{ weighted average of } 19.0 \ 11 \ \text{from } ^{73}\text{Se } \varepsilon \ \text{decay} \ (7.15 \ \text{h}), \ \text{and} \ 19.5 \ 19 \ \text{from } ^{73}\text{Ge}(p,n\gamma).$ Mult : from ce data in (p. nz)
574.55	(1/2)-	510.03 <i>10</i> 181.13 <i>4</i>	100 <i>3</i> 55.9 <i>19</i>	0.0 393.422	3/2 ⁻ 3/2 ⁻	M1+E2	0.40 8	0.028 4	In the form the data in (p,ny). I _γ : from ⁷³ Se ε decay (7.15 h). Other: 100 <i>14</i> from ⁷³ Ge(p,nγ), ≈100 from ⁷³ Se ε decay (39.8 m). $\alpha(K)=0.025 \ 3; \ \alpha(L)=0.0027 \ 4; \ \alpha(M)=0.00042 \ 6$ $\alpha(N)=3.1\times10^{-5} \ 4$ E _γ : weighted average of 181.06 7 from ⁷³ Se ε decay (39.8 m) and 181.15 4 from ⁷³ Ge(p,nγ). I _γ : weighted average of 56.1 <i>12</i> from ⁷³ Se ε decay (39.8 m) and 32 <i>15</i> from ⁷³ Ge(p,nγ).
		320.58 <i>3</i>	100.0 12	253.980	(1/2)-	M1		0.00444	Mult., δ : from ce data in ⁷³ Se ε decay (39.8 m). Other: ce data in (p,n γ) gives M1 or E1(+M2) with δ <0.24. α (K)=0.00396 6; α (L)=0.000416 6; α (M)=6.34×10 ⁻⁵ 9 α (N)=4.83×10 ⁻⁶ 7

 ∞

From ENSDF

						Adopt	ed Levels, Gai	nmas (continu	ued)
							$\gamma(^{73}\text{As})$ (co	ontinued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ	α #	Comments
574.55	(1/2)-	490.23 12	16.2 4	84.32	(1/2)-				E _γ : weighted average of 320.53 8 from ⁷³ Se ε decay (39.8 m) and 320.59 3 from ⁷³ Ge(p,nγ). I _γ : from ⁷³ Se ε decay (39.8 m). Other: 100 10 from ⁷³ Ge(p,nγ) Mult.: from ce data in ⁷³ Se ε decay (39.8 m) and (p,nγ). E _γ : weighted average of 490.24 17 from ⁷³ Se ε decay (39.8 m) and 490.23 12 from ⁷³ Ge(p,nγ).
577.894	5/2-	184.44 20 323.95 10 493.5 ^{&}	1.0 5 1.4 7 <0.6	393.422 253.980 84.32	3/2 ⁻ (1/2) ⁻ (1/2) ⁻				r_{γ} . Hom Se ε decay (39.8 m). Other, to 5 hom Ge(p, r_{γ}).
		510.86 <i>10</i> 577.89 <i>2</i>	71 20 100 12	67.035 0.0	5/2 ⁻ 3/2 ⁻	M1+E2	+0.5 +5-2	0.00123 16	I _γ : 216 36 is discrepant in (12 C,p2nγ). α (K)=0.00109 14; α (L)=0.000114 16; α (M)=1.74×10 ⁻⁵ 24 α (N)=1.32×10 ⁻⁶ 18 E _γ ,I _γ : others: 577.63 27 from ⁷³ Se ε decay (39.8 m), 577.4 2 from (α ,2nγ). Mult.: from $\gamma(\theta)$ and ce data in (p,nγ). Other: (E2) from ce data in ⁷³ Se ε decay (39.8 m). δ: from $\gamma(\theta)$ in (n nγ)
655.460	3/2-	77.6 ^{&} 262.05 <i>3</i>	<7 13.4 <i>3</i>	577.894 393.422	5/2 ⁻ 3/2 ⁻	M1+E2	0.6 2	0.0113 20	$\alpha(K)=0.0100 \ 17; \ \alpha(L)=0.00109 \ 20; \ \alpha(M)=0.00017 \ 3 \ \alpha(N)=1.23\times10^{-5} \ 21 \ E_{-1}$ weighted every of 262 01 7 from ⁷³ Se a decay (30.8 m)
									and 262.06 <i>3</i> from ⁷³ Ge(p,nγ). I _γ : from ⁷³ Se ε decay (39.8 m). Other: 10 4 from ⁷³ Ge(p,nγ). Mult.,δ: from ce data in ⁷³ Se ε decay (39.8 m). Other: δ <0.6 from ce data in (p,nγ).
		401.47 2	100.0 <i>10</i>	253.980	(1/2)-	M1+E2	1.0 3	0.0039 5	α(K)=0.0034 4; α(L)=0.00037 5; α(M)=5.6×10-5 7 α(N)=4.2×10-6 5 Eγ: weighted average of 401.47 7 from 73Se ε decay (39.8 m), 401.3 2 from 71Ga(α,2nγ), and 401.47 2 from 73Ge(p,nγ). Iγ: from 73Se ε decay (39.8 m). Others: 100 8 from 71Ga(α,2nγ) and 100 10 from 73Ge(p,nγ). Mult.,δ: from ce data in 73Se ε decay (39.8 m). Other: δ<0.7
		571.08 6	19.4 6	84.32	(1/2)-				from ce data in $(p,n\gamma)$. E_{γ} : weighted average of 570.96 27 from ⁷³ Se ε decay (39.8 m) and 571.09 6 from ⁷³ Ge(p,n\gamma). Ly: weighted average of 19.4 6 from ⁷³ Se ε decay (39.8 m) and
		588.34 15	7.1 4	67.035	5/2-				20 4 from ⁷³ Ge(p,n γ). E _{γ} : weighted average of 588.28 17 from ⁷³ Se ε decay (39.8 m) and 588.39 15 from ⁷³ Ge(p,n γ).

From ENSDF

						Adopted	Levels, Gammas	(continued)	
							$\gamma(^{73}\text{As})$ (continue	d)	
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^{π}	Mult. [‡]	δ	α #	Comments
655.460	3/2-	655.42 11	9.51 13	0.0	3/2-				I _γ : weighted average of 7.0 4 from ⁷³ Se ε decay (39.8 m) and 8.2 18 from ⁷³ Ge(p,nγ). E _γ : weighted average of 655.30 14 from ⁷³ Se ε decay (39.8 m) and 655.50 11 from ⁷³ Ge(p,nγ). I _γ : weighted average of 9.5 1 from ⁷³ Se ε decay (39.8 m) and 10 3 from ⁷³ Ge(p,nγ).
673.9 769.821	5/2-	164 ^{&} 191.92 <i>15</i> 376.42 <i>4</i> 515.84 <i>3</i>	100 1.7 <i>11</i> 9.4 <i>13</i> 16.7 <i>19</i>	510.054 577.894 393.422 253.980	$(5/2)^+$ $5/2^-$ $3/2^-$ $(1/2)^-$	E2		0.00232	$\alpha(K)=0.00206 \ 3; \ \alpha(L)=0.000219 \ 3; \ \alpha(M)=3.33\times10^{-5} \ 5 \ \alpha(N)=2.50\times10^{-6} \ 4$
		685.5 ^{&} 702.77 2	<1 60.9 <i>9</i>	84.32 67.035	(1/2) ⁻ 5/2 ⁻	D+Q			For the form the form γ^{13} Se ε decay (39.8 m). I_{γ} : weighted average of 60.9 9 from γ^{13} Se ε decay (39.8 m) and 59 6 from γ^{13} Ge(p,n γ). Mult.: from $\gamma(\theta)$ in (p,n γ) with δ =-0.25 +44-56 or
		769.72 13	100.0 22	0.0	3/2-	M1(+E2)	<2.0	0.00065 <i>6</i>	+1.2< δ <-5.7. α (K)=0.00058 6; α (L)=6.1×10 ⁻⁵ 6; α (M)=9.2×10 ⁻⁶ 9 α (N)=7.0×10 ⁻⁷ 7 E _γ : unweighted average of 769.59 <i>10</i> from ⁷³ Se ε decay (39.8 m) and 769.85 2 from ⁷³ Ge(p,nγ). Mult., δ : from ce data in (p,nγ). I _γ : from ⁷³ Se ε decay (39.8 m). Other: 100 <i>10</i> from ⁷³ Ge(p,nγ).
850.515	(5/2)-	195.07 <i>18</i> 457.04 <i>12</i> 596.57 <i>12</i> 850.51 <i>2</i>	1.4 8 2.1 3 1.7 <i>10</i> 100 <i>10</i>	655.460 393.422 253.980 0.0	3/2 ⁻ 3/2 ⁻ (1/2) ⁻ 3/2 ⁻	M1+E2	+0.19 +19-17	4.86×10 ⁻⁴ 11	$ α(K)=0.000434 10; α(L)=4.47×10^{-5} 11; α(M)=6.82×10^{-6} 16 α(N)=5.21×10^{-7} 12 Eγ: others: 850.17 18 from 73Se ε decay (39.8 m). Mult.,δ: from γ(θ) and ce data in (p,nγ).$
860.541	7/2-	282.66 9 467.15 5 793.47 2	0.69 <i>14</i> 4.6 <i>5</i> 65 <i>5</i>	577.894 393.422 67.035	5/2 ⁻ 3/2 ⁻ 5/2 ⁻	M1+E2	+0.21 +15-18	5.65×10 ⁻⁴ 12	$\alpha(K)=0.000504 \ II; \ \alpha(L)=5.20\times10^{-5} \ I2; \ \alpha(M)=7.93\times10^{-6} \ I8 \ \alpha(N)=6.06\times10^{-7} \ I3$

 $^{73}_{33}\text{As}_{40}$ -10

						Adopt	ed Levels, Gam	mas (continued)	
							$\gamma(^{73}\text{As})$ (cor	ntinued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ	$\alpha^{\#}$	Comments
860.541	7/2-	860.56 2	100 9	0.0	3/2-	E2		5.57×10 ⁻⁴	E _γ : others: 794.0 2 from ⁷¹ Ga(α,2nγ). I _γ : weighted average of 71 8 from ⁶⁴ Ni(¹² C,p2nγ) and 62 5 from ⁷³ Ge(p,nγ). Other: 17 2 from ⁷¹ Ga(α,2nγ), Mult.: from $\gamma(\theta)$ and ce data in (p,nγ), γ (DCO) in (¹² C,p2nγ). δ: or +3.7<δ<-1.2, from $\gamma(\theta)$ in (p,nγ). α (K)=0.000496 7; α (L)=5.17×10 ⁻⁵ 8; α (M)=7.88×10 ⁻⁶ 11
									$\alpha(N)=5.98\times10^{-7} 9$ E _y : other: 861.1 2 from ⁷¹ Ga(α ,2n γ). I _y : from ⁶⁴ Ni(¹² C,p2n γ). Other: 100 <i>11</i> from ⁷³ Ge(p,n γ). Mult.: from $\gamma(\theta)$ and ce data in (p,n γ), $\gamma(\theta)$ in (α ,2n γ) and $\gamma(DCO)$ in (¹² C,p2n γ).
886.11	1/2+	311.45 <i>15</i> 376.08 7 492.71 8 632.14 <i>11</i>	26 7 46 <i>14</i> 100 12 <i>4</i>	574.55 510.054 393.422 253.980	$(1/2)^{-}$ $(5/2)^{+}$ $3/2^{-}$ $(1/2)^{-}$				
929.13	(9/2 ⁻)	862.0 2	100	67.035	5/2-	Q			E_{γ} : from (α,2nγ). Mult.: from γ(DCO) in (¹² C,p2nγ).
993.760	(7/2)-	133.2 ^{&} 223.93 5	<1 5 <i>1</i>	860.541 769.821	7/2 ⁻ 5/2 ⁻				
		415.85 5	13 2	577.894	5/2-	M1(+E2)	<0.65	0.0027 4	B(M1)(W.u.)=0.020 +31-9 α (K)=0.0024 3; α (L)=0.00025 4; α (M)=3.9×10 ⁻⁵ 5 α (N)=2.9×10 ⁻⁶ 4 Mult δ : from ce data in (p. px)
		483.72 3	82	510.054	(5/2)+	[E1]		8.31×10 ⁻⁴	B(E1)(W.u.)= $2.0 \times 10^{-4} + 18 - 10$ α (K)= $0.000742 \ 11; \ \alpha$ (L)= $7.65 \times 10^{-5} \ 11; \ \alpha$ (M)= $1.164 \times 10^{-5} \ 17$
		600.31 <i>3</i>	36 4	393.422	3/2-	[E2]		1.47×10 ⁻³	$\alpha(N) = 8.84 \times 10^{-7.13}$ B(E2)(W.u.)=1.0×10 ² +7-4 $\alpha(K) = 0.001312 \ 19; \ \alpha(L) = 0.0001385 \ 20; \ \alpha(M) = 2.11 \times 10^{-5}$ 3 (N)=1.500, 10=6, 22
		926.72 2	82 8	67.035	5/2-	M1+E2	+1.0 +11-5	4.33×10 ⁻⁴ 20	$\begin{array}{l} \alpha(N)=1.590\times10^{-5}\ 23\\ B(M1)(W.u.)=0.008\ +13-6;\ B(E2)(W.u.)=13\ +22-10\\ \alpha(K)=0.000387\ 18;\ \alpha(L)=4.00\times10^{-5}\ 20;\ \alpha(M)=6.1\times10^{-6}\\ 3\\ \alpha(N)=4.65\times10^{-7}\ 22\\ E_{\gamma},I_{\gamma}:\ \text{other:}\ 926.19\ 15,\ I\gamma=80\ 26\ \text{from}\ ^{73}\text{Se}\ \varepsilon\ \text{decay}\\ (7.15\ h). \end{array}$
		993.77 2	100	0.0	3/2-	(E2)		3.92×10^{-4}	Mult., δ : from $\gamma(\theta)$ and ce data in (p,n γ). B(E2)(W.u.)=23 +13-8

						Adopted I	Levels, G	Gammas (cont	tinued)
						<u>2</u>	v ⁽⁷³ As) ((continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ	α [#]	Comments
1013 55	(1/2-)	358.00 4	100	655 460	3/2-				$\begin{array}{l} \alpha(\mathrm{K}){=}0.000350 \; 5; \; \alpha(\mathrm{L}){=}3.63{\times}10^{-5} \; 5; \; \alpha(\mathrm{M}){=}5.52{\times}10^{-6} \; 8 \\ \alpha(\mathrm{N}){=}4.20{\times}10^{-7} \; 6 \\ \mathrm{E}_{\gamma}: \; \text{weighted average of 993.52} \; 12 \; \mathrm{from} \; ^{73}\mathrm{Se} \; \varepsilon \; \mathrm{decay} \\ (7.15 \; \mathrm{h}) \; \mathrm{and} \; 993.78 \; 2 \; \mathrm{from} \; ^{73}\mathrm{Ge}(\mathrm{p}{,}\mathrm{n}\gamma). \end{array}$
1013.55	$(1/2^{-})^{+}$	609.22 2	100	427.902	9/2 ⁺	E2		1.41×10 ⁻³	B(E2)(W.u.)=45 3 α (K)=0.001258 18; α (L)=0.0001327 19; α (M)=2.02×10 ⁻⁵ 3 α (N)=1.523×10 ⁻⁶ 22 E _y : others: 609.17 19 from ⁷³ Se ε decay (7.15 h) and 609.3 2 from ⁷¹ Ga(α ,2ny). Mult.: from ce data and $\gamma(\theta)$ in (p,n γ), $\gamma(\theta)$ in (α ,2n γ).
1077.71	(3/2)-	503.39 <i>15</i> 684.4 ^{&} 823.84 <i>16</i>	34 7 <9 18.5 <i>11</i>	574.55 393.422 253.980	$(1/2)^{-}$ $3/2^{-}$ $(1/2)^{-}$				E _y : unweighted average of 823.68 8 from ⁷³ Se ε decay (39.8 m) and 823.99 8 from ⁷³ Ge(p,n γ).
		993.37 16	12.9 <i>3</i>	84.32	(1/2)-				E_{γ} : from "Se ε decay (39.8 m). Other: 22 γ from (p,n γ). E_{γ} : unweighted average of 993.28 δ from ⁷³ Se ε decay (39.8 m) and 993.63 <i>10</i> from ⁷³ Ge(p,n γ). I_{γ} : from ⁷³ Se ε decay (39.8 m). Other: 13 5 from (p,n γ).
		1010.69 25	1.3 8	67.035	5/2-				$E_{\gamma}I_{\gamma}$: from ⁷³ Se ε decay (39.8 m) only.
		1077.66 6	100	0.0	3/2-				E_{γ} : weighted average of 1077.64 5 from ⁷³ Se ε decay (39.8 m) and 1077.91 20 from ⁷³ Ge(p,n γ).
1086.97	5/2-	226.56 17	12 4	860.541	7/2-	M1(+E2)	< 0.3	0.0116 12	B(M1)(W.u.)=0.18 +33-13 α (K)=0.0103 10; α (L)=0.00110 12; α (M)=0.000168 18 α (N)=1.27×10 ⁻⁵ 13
		317.18 6	25 10	769.821	5/2-				
		431.59 20	84	655.460	3/2-				
		512.45 10	12 6	574.55	$(1/2)^{-}$	[E2]			$B(E2)(W.u.) = 9 \times 10^{1} + 17 - 7$
		693.59 8	33.0 16	393.422	3/2-				I _{γ} : from ⁷³ Se ε decay (39.8 m). Other: 40 14 from (p,n γ).
		833.09 10	83 8	253.980	$(1/2)^{-}$	[E2]			$B(E2)(W.u.)=6\times10^{1}+6-3$
		1002.48 10	100	84.32	(1/2)-	(E2)		3.84×10 ⁻⁴	I_{γ} : from ⁷⁵ Se ε decay (39.8 m). Other: 80 37 from (p,nγ). B(E2)(W.u.)=27 +26-15 α(K)=0.000343 5; α(L)=3.55×10 ⁻⁵ 5; α(M)=5.41×10 ⁻⁶ 8
		1019.70 <i>17</i>	84.2 18	67.035	5/2-				$\alpha(\Lambda) = 4.12 \times 10^{-7.6} \text{ G}$ E_{γ} : unweighted average of 1019.54 <i>12</i> from ⁷³ Se ε decay (39.8 m) and 1019.87 <i>13</i> from (p,n γ).
		1086.89 <i>11</i>	52 11	0.0	3/2-				I_{γ} : from ⁷³ Se ε decay (39.8 m). Other: 39 13 from (p,n γ). E_{γ} : unweighted average of 1086.78 8 from ⁷³ Se ε decay (39.8 m) and 1086.99 5 from (p,n γ).
1178.08	(9/2 ⁻)	317.50 <i>15</i> 408.19 <i>20</i>	2 <i>1</i> 2.1 <i>4</i>	860.541 769.821	7/2 ⁻ 5/2 ⁻				I_{γ} : from (°Se ε decay (39.8 m). Other: 53 1/ from (p,n γ). I_{γ} : other: 13 7 in (¹² C,p2n γ). γ not seen in (¹² C,p2n γ).

					Adopt	ed Levels, Gammas	(continued)	
						γ ⁽⁷³ As) (continue	<u>d)</u>	
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J	\int_{f}^{π} Mult.	ŧδ	$\alpha^{\#}$	Comments
1178.08	(9/2 ⁻)	600.13 <i>15</i> 1110.91 <i>14</i>	8 2 100	577.894 5/2 67.035 5/2	2- 2- Q			I _γ : 80 5 in (¹² C,p2nγ). E _γ : unweighted average of 1110.64 6 from ⁷³ Se ε decay (7.15 h), 1111.1 2 from ⁷¹ Ga(α,2nγ) and 1111.00 2 from (p,nγ). Mult : from α (DCO) in (¹² C p2pα)
1188.75	(3/2 ⁻)	934.84 <i>15</i> 1188.69 <i>13</i>	100 <i>3</i> 32 <i>11</i>	253.980 (1/ 0.0 3/2	2)-			E _y ,I _y : from ⁷³ Se ε decay (39.8 m). E _x ,I _y : from ⁷³ Se ε decay (39.8 m).
1216.3	(3/2)-	356 ^{&} 642 789		860.541 7/2 574.55 (1/ 427.902 9/2	2 ⁻ 2) ⁻ 2 ⁺ [E3]		1.61×10 ⁻³	E _γ : from (p,γ). E _γ : from (p,γ). $\alpha(K)=0.001433\ 20;\ \alpha(L)=0.0001549\ 22;$ $\alpha(M)=2.36\times10^{-5}\ 4$ $\alpha(N)=1.768\times10^{-6}\ 25$ E _γ : from (p,γ). γ to 9/2 ⁺ , implying mult=E3 makes this
1217.95	(3/2)+	1151 331.92 <i>12</i>	51 8	67.035 5/2 886.11 1/2	2 ⁻ 2 ⁺ M1(+E	2) <0.8	0.0052 11	transition less likely. E_{γ} : from (p, γ). $\alpha(K)=0.0046 \ 10; \ \alpha(L)=0.00049 \ 11; \ \alpha(M)=7.5\times10^{-5} \ 17$ $\alpha(M)=5.6\times10^{-6} \ 12$
		707.89 <i>3</i>	100	510.054 (5/	(2) ⁺ M1,E2		0.00082 11	$\alpha(K) = 0.00073 \ 10; \ \alpha(L) = 7.6 \times 10^{-5} \ 11; \alpha(M) = 1.16 \times 10^{-5} \ 16 \alpha(N) = 8.8 \times 10^{-7} \ 12$
1221.283	(7/2)-	451.45 2 565.86 20 643.38 3	12 2 4 <i>I</i> 10 2	769.821 5/2 655.460 3/2 577.894 5/2	2- 2- [E2] 2- M1(+E	2) <1.0	0.00096 <i>9</i>	B(E2)(W.u.)=47 +32-21 B(M1)(W.u.)=0.009 +20-4 $\alpha(K)=0.00086 \ 8; \ \alpha(L)=8.9\times10^{-5} \ 8; \ \alpha(M)=1.36\times10^{-5} \ 13$ $\alpha(N)=1.04\times10^{-6} \ 9$ Mult 5; from co data in (p.p.)
		827.83 <i>15</i> 1154.25 <i>2</i>	4 <i>1</i> 100	393.422 3/2 67.035 5/2	2- [E2] 2- (M1+E	2) -0.8 +4-6	2.68×10 ⁻⁴ 7	Mult., δ : from ce data in (p,hy). B(E2)(W.u.)=7.1 +48-31 B(M1)(W.u.)=0.019 +18-11; B(E2)(W.u.)=13 +17-10 α (K)=0.000237 6; α (L)=2.44×10 ⁻⁵ 7; α (M)=3.71×10 ⁻⁶ 10
1275.15	(7/2)+	765.12 12	100.0 <i>15</i>	510.054 (5/	2) ⁺ M1+E2	2 -0.31 +12-28	0.00062 3	$\begin{aligned} \alpha(N) &= 2.84 \times 10^{-7} \ \&; \ \alpha(IPF) &= 2.8 \times 10^{-6} \ &3 \\ \text{Mult.}, \&: \ \text{from } \gamma(\theta) \ \text{in } (p, \eta \gamma). \\ \alpha(K) &= 0.000551 \ 24; \ \alpha(L) &= 5.7 \times 10^{-5} \ 3; \\ \alpha(M) &= 8.7 \times 10^{-6} \ 4 \\ \alpha(N) &= 6.6 \times 10^{-7} \ &3 \\ \text{E}_{\gamma}: \ \text{weighted average of } 765.07 \ 12 \ \text{from } ^{73}\text{Se } \varepsilon \\ \text{decay } (7.15 \ \text{h}) \ \text{and } 765.25 \ 20 \ \text{from } ^{73}\text{Ge}(p, \eta \gamma). \\ \text{I}_{\gamma}: \ \text{from } ^{73}\text{Se } \varepsilon \ \text{decay } (7.15 \ \text{h}). \ \text{Other: } 100 \ 10 \end{aligned}$

Adopted Levels, Gammas (continued)											
γ ⁽⁷³ As) (continued)											
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	α #	Comments			
1275.15	(7/2)+	847.40 17	63 5	427.902	9/2+	M1,E2	0.00053 5	from ⁷³ Ge(p,ηγ). Mult.,δ: from ce data and $\gamma(\theta)$ in (p,ηγ). $\alpha(K)=0.00048$ 5; $\alpha(L)=4.9\times10^{-5}$ 5; $\alpha(M)=7.5\times10^{-6}$ 7 $\alpha(N)=5.7\times10^{-7}$ 5			
								E _γ : weighted average of 847.16 <i>17</i> from ⁷³ Se ε decay (7.15 h) and 847.52 <i>12</i> from ⁷³ Ge(p,nγ) 73AS G 1207.9 3 8 1. I _γ : weighted average of 63 5 from ⁷³ Se ε decay (7.15 h) and			
		1208.0.3	8 5	67 035	5/2-			63 6 from 73 Ge(p,n γ). E : weighted average of 1207.9.3 from 73 Se s decay (7.15 h)			
		1208.0 5	85	07.055	5/2			E_{γ} . weighted average of 1207.9 5 from $-3e \epsilon$ decay (7.15 fr) and 1208.0 3 from 73 Ge(p,n γ).			
								I_{γ} : unweighted average of 3.1 8 from ⁷³ Se ε decay (7.15 h) and 13.5 <i>19</i> from ⁷³ Ge(p,n γ).			
		1274.39 21	5.3 8	0.0	3/2-	[M2]	4.46×10^{-4}	$\alpha(K)=0.000394 \ 6; \ \alpha(L)=4.09\times10^{-5} \ 6; \ \alpha(M)=6.24\times10^{-6} \ 9$ $\alpha(N)=4.78\times10^{-7} \ 7; \ \alpha(IPF)=4.12\times10^{-6} \ 6$			
1202.10	(11/2)+	256 20 20	10.2	1007 10	(12/2)+			E_{γ} , I_{γ} : from ⁷³ Se ε decay (7.15 h) only. Poor fit, level-energy difference=1275.14.			
1293.10	(11/2)	865.18 [@] 12	1.9 3 $100^{@} 12$	427.902	(13/2)* 9/2*	M1,E2	0.00051 5	$\alpha(K)=0.00045 \ 4; \ \alpha(L)=4.7\times10^{-5} \ 5; \ \alpha(M)=7.1\times10^{-6} \ 7 \ \alpha(N)=5.4\times10^{-7} \ 5$			
								E_{γ} : weighted average of 865.09 <i>12</i> from ⁷³ Se ε decay (7.15 h), 865.3 2 from ⁷¹ Ga(α ,2n γ), and 865.5 3 from ⁷³ Ge(p,n γ).			
1202 25	$(7/2)^+$	200.68.20	6.1	003 760	$(7/2)^{-}$			Mult.: from $\gamma(\theta)$ and ce data in (p,n γ), D from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.			
1275.55	(1/2)	783.33 3	100	510.054	$(7/2)^+$ $(5/2)^+$	M1,E2	0.00064 7	$\alpha(K)=0.00057 \ 6; \ \alpha(L)=5.9\times10^{-5} \ 7; \ \alpha(M)=9.1\times10^{-6} \ 10 \ \alpha(N)=6.9\times10^{-7} \ 8$			
			0					E_{γ} : weighted average of 783.7 <i>3</i> from ⁷³ Se ε decay (7.15 h) and 783.33 2 from ⁷³ Ge(p,nγ).			
		865.18 [@] 12	28 [@] 11	427.902	9/2+	D		E _γ : weighted average of 865.09 <i>12</i> from ⁷³ Se ε decay (7.15 h), 865.3 2 from ⁷¹ Ga(α ,2n γ), and 865.5 3 from ⁷³ Ge(p,n γ).			
								Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$. I _{γ} : weighted average of 33 17 from ⁷³ Se ε decay (7.15 h) and 26 11 from ⁷³ Ge(p, ny).			
		1226.6 9	53	67.035	5/2-			E_{γ}, I_{γ} : from ⁷³ Se ε decay (7.15 h) only.			
1299.35	(1/2 ⁻ ,3/2)	643.94 20	25.0 20	655.460	3/2-			E _{γ} : weighted average of 643.9 <i>3</i> from ⁷³ Se ε decay (39.8 m) and 643.96 <i>20</i> from ⁷³ Ge(p,n γ).			
								I_{γ} : from ' ³ Se ε decay (39.8 m). Other: 16 <i>10</i> from 73 Ge(p,n γ).			

Adopted Levels, Gammas (continued)											
γ ⁽⁷³ As) (continued)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α #	Comments			
1299.35	(1/2 ⁻ ,3/2)	724.77 12	100 3	574.55	(1/2)-			E_{γ} : weighted average of 724.80 <i>12</i> from ⁷³ Se ε decay (39.8 m) and 724.69 <i>20</i> from ⁷³ Ge(p,nγ).			
		1045.35 6	25 8	253.980	(1/2)-			I _γ : from ⁷³ Se ε decay (39.8 m). Other: 100 50 from ⁷³ Ge(p,nγ). E _γ : weighted average of 1045.58 22 from ⁷³ Se ε decay (39.8 m) and 1045.33 6 from ⁷³ Ge(p,nγ).			
		1215.4 4	40 4	84.32	(1/2)-			I_{γ} : from (p,n γ). Other: 23 <i>I3</i> from ⁷³ Se ε decay (39.8 m). E_{γ} : unweighted average of 1215.80 24 from ⁷³ Se ε decay (39.8 m) and 1214.97 20 from ⁷³ Ge(p,n γ).			
		1232.34 15	53 <i>3</i>	67.035	5/2-			I _{γ} : from ⁷³ Se ε decay (39.8 m). Other: 16 6 from (p,n γ). E _{γ} : weighted average of 1232.40 <i>19</i> from ⁷³ Se ε decay (39.8 m) and 1232.30 <i>15</i> from ⁷³ Ge(p,n γ).			
1202.20	$(5/2^{-})$	441 69 20	17.7	960 541	7/2-			I _{γ} : from ⁷³ Se ε decay (39.8 m). Other: 22 8 from (p,n γ).			
1502.20	(3/2)	646.78 <i>20</i>	1.6 7	655.460	7/2 3/2 ⁻			E_{γ} : weighted average of 646.7 <i>3</i> from ⁷³ Se ε decay (39.8 m) and 646.82 20 from ⁷³ Ge(p,n γ).			
			•••		- (a -			I _{γ} : weighted average of 1.5 7 from ⁷³ Se ε decay (39.8 m) and 1.8 9 from ⁷³ Ge(p,n γ).			
		724.35 20 792.28 20	23 8 25.7 22	577.894 510.054	5/2 $(5/2)^+$			E_{γ} : weighted average of 792.48 22 from ⁷³ Se ε decay (39.8 m) and 792.12 20 from ⁷³ Ge(p.p γ).			
								I _y : weighted average of 26.5 22 from ⁷³ Se ε decay (39.8 m) and 20 6 from ⁷³ Ge(p,ny).			
		908.65 20	31.9 11	393.422	3/2-			E_{γ} : weighted average of 908.46 <i>19</i> from ⁷³ Se ε decay (39.8 m) and 908.86 <i>20</i> from ⁷³ Ge(p,nγ).			
								I_{γ} : weighted average of 32.0 <i>11</i> from ⁷³ Se ε decay (39.8 m) and 25 <i>10</i> from ⁷³ Ge(p.n γ).			
		1302.15 11	100.0 18	0.0	3/2-			E_{γ} : unweighted average of 1302.04 6 from ⁷³ Se ε decay (39.8 m) and 1302.25 4 from ⁷³ Ge(p,n γ).			
1324 103	$(5/2^{+})$	814.06.7	80 14	510.054	$(5/2)^+$			I _{γ} : from ⁷³ Se ε decay (39.8 m). Other: 100 <i>12</i> from ⁷³ Ge(p,n γ).			
1524.195	(3/2)	930.77 <i>4</i> 1324.19 <i>3</i>	63 <i>18</i> 100	393.422 0.0	$3/2^{-}$ $3/2^{-}$						
1328.81	$(7/2)^+$	818.71 15	27.6 14	510.054	(5/2)+			E_{γ} : weighted average of 818.65 <i>15</i> from ⁷³ Se ε decay (7.15 h) and 818.76 <i>15</i> from ⁷³ Ge(p,nγ).			
								I _{γ} : weighted average of 27.3 <i>14</i> from ⁷³ Se ε decay (7.15 h) and 30 4 from ⁷³ Ge(p,n γ).			
		900.87 14	100.0 14	427.902	9/2+	M1,E2	0.00046 4	$\alpha(K)=0.00041$ 4; $\alpha(L)=4.3\times10^{-5}$ 4; $\alpha(M)=6.5\times10^{-6}$ 6			
								E_{γ} : unweighted average of 900.73 <i>10</i> from ⁷³ Se ε decay (7.15 h) and 901.01 2 from ⁷³ Ge(p.n γ).			
								I_{γ} : from ⁷³ Se ε decay (7.15 h). Other: 100 <i>11</i> from ⁷³ Ge(p,n γ).			

					Adopted	d Levels, G	ammas (cont	inued)
						γ ⁽⁷³ As) (continued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^π	Mult. [‡]	$\alpha^{\#}$	Comments
1344.506	(7/2)-	350.77 <i>3</i>	27 4	993.760	(7/2)-			
		483.94 20	93	860.541	7/2-			
		574.72 20	31 5	769.821	$5/2^{-}$			
		689.03 2	49 /	655.460	3/2			
		/00.05 20	42 13	3/7.894	5/2 2/2-			
		931.02 10	100	595.422 67.035	5/2 5/2-			
		1344.57 12	9 2	07.035	$3/2^{-}$			
1/00.92		073&		427 902	0/2+			
1489 46		979.4.2	100	510.054	$(5/2)^+$			
1557.24	$(3/2^{-} 5/2 7/2^{-})$	170 7 8 2	20.2	1077 71	$(3/2)^{-}$			
1557.24	(3/2, 3/2, 7/2)	69671	100 4	860 541	(3/2) $7/2^{-}$			
		787.4 2	41 /	769.821	$5/2^{-}$			
1588.60	$(5/2)^{-}$	1011.5 3	45 9	577.894	5/2-			
	,	1333.8 <i>3</i>	100 9	253.980	$(1/2)^{-}$			
		1521.9 <mark>&</mark>	64 9	67.035	$5/2^{-}$			
1591.6	$(3/2)^{-}$	936		655.460	$3/2^{-}$			E_{γ} : from (p, γ).
1612.76	5/2-,7/2-	1102.7 <i>3</i>	28 4	510.054	$(5/2)^+$			
		1545.7 2	100 4	67.035	5/2-			
1649.7	$(1/2, 3/2, 5/2^{-})$	1565.3 🗞 3	100	84.32	$(1/2)^{-}$			
1658.18	$(11/2^{-})$	480.2 2	100 10	1178.08	(9/2 ⁻)	(D)		E_{γ}, I_{γ} : from ($\alpha, 2n\gamma$).
		729	43 10	929.13	(9/2 ⁻)			E_{γ}, I_{γ} : γ only in (¹² C, p2n γ).
		797.4 2	45 6	860.541	7/2-	Q		E_{γ},I_{γ} : from (α ,2n γ). Other: I γ =255 17 in (¹² C,p2n γ). Mult.: from γ (DCO) in (¹² C,p2n γ).
1761.52	$(13/2^+)$	468.4 2	100 5	1293.10	$(11/2)^+$	D		E_{γ},I_{γ} : from $(\alpha,2n\gamma)$. Mult.: from $\gamma(\theta)$ in $(\alpha,2n\gamma)$.
		724.4 2	73 13	1037.13	(13/2)+			E_{γ},I_{γ} : from (α ,2n γ). Other: $I\gamma$ =183 46 in ($^{12}C,p^2n\gamma$). Mult.: possible ΔJ =0, dipole transition in (α ,2n γ).
		1333.7 <mark>&</mark> 2	166 12	427.902	$9/2^{+}$			$E_{\gamma}I_{\gamma}$; from (α ,2n γ), γ not seen in (¹² C,p2n γ).
1796.5		1712.1 <mark>&</mark> 3	100	84.32	$(1/2)^{-}$			
1850.89	$(9/2)^+$	558.0.3	36713	1293 10	$(1/2)^+$			$E_{\rm ac}$: weighted average of 557.9.5 from ⁷³ Se ε decay (7.15 h) and
1020.09	(),2)	550.0 5	50.7 15	1299.10	(11/2)			558.0 3 from ⁷³ Ge(p, γ).
		575 0 5	100.5	1275 15	$(7/2)^+$			r_{γ} . Hold See decay (7.15 h). Outer, and St 0 hold $O(p,n\gamma)$. E. I.: from ⁷³ Se c decay (7.15 h), not seen in (p. pv)
		813.4.3	607	1037 13	$(13/2)^+$	[F2]	6.42×10^{-4}	$E_{\gamma,1\gamma}$. Hom Set e decay (7.15 fr), not seen in (p, ry). B(F2)(W r) -6.9 + 39-26
		015.4 5	0.07	1037.13	(13/2)	[122]	0.72/10	$\alpha(K) = 0.000573.8; \alpha(L) = 5.98 \times 10^{-5}.9; \alpha(M) = 0.10 \times 10^{-6}.13$
								$\alpha(N) = 6.90 \times 10^{-7} \ 10$
								$F_{\rm L}$: from ⁷³ Se s decay (7.15 h)
		1340.9.4	47313	510 054	$(5/2)^+$	[F2]	2.39×10^{-4}	$\alpha(K) = 0.000180 3 \cdot \alpha(L) = 1.85 \times 10^{-5} 3 \cdot \alpha(M) = 2.81 \times 10^{-6} 4$
		1570.77	тт.5 15	510.054	$(J_1 L)$	[122]	2.37~10	$\alpha(N)=2.15\times10^{-7}$ 3; $\alpha(IPF)=3.77\times10^{-5}$ 6

From ENSDF

 $^{73}_{33}\text{As}_{40}$ -16

 $^{73}_{33}As_{40}$ -16

						Adopte	d Levels, (Gammas (continued)
							$\gamma(^{73}\text{As})$	(continued)
	E_i (level)	\mathbf{J}^{π}_{i}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	Comments
								B(E2)(W.u.)=4.5 +19-14 E _{γ} : unweighted average of 1340.50 7 from ⁷³ Se ε decay (7.15 h) and 1341.2 3 from ⁷³ Ge(p,n γ).
	1850.89 1876.74 1903.6	(9/2) ⁺ (1/2 to 7/2 ⁻) (1/2 ⁻ to 9/2 ⁻)	1423.0 <i>3</i> 1483.3 <i>2</i> 1133.8 <i>3</i>	93 <i>3</i> 100 100	427.902 393.422 769.821	9/2 ⁺ 3/2 ⁻ 5/2 ⁻		I _{γ} : from ⁷³ Se ε decay (7.15 h). E _{γ} ,I _{γ} : from ⁷³ Se ε decay (7.15 h).
	1910.12	(9/2+,11/2)	1229.7 ^{&} 2 872.56 27	215 8 100 <i>18</i> 59 3	673.9 1037.13 427.002	$(13/2)^+$		E_{γ}, I_{γ} : from ⁷³ Se ε decay (7.15 h).
	1949.82	(17/2+)	912.7 2	100	1037.13	$(13/2)^+$	Q	E_{γ} ; from (α ,2n γ). Mult.: from γ (DCO) in (12 C,p2n γ) and $\gamma(\theta)$ in (α ,2n γ).
	1962.87 1972.98	(3/2, 5/2, 7/2) $(1/2^{-}, 3/2, 5/2^{-})$	873.8 ^{c} 3 1452.8 2 1719.1 4	115 8 100 8 100 <i>13</i>	1086.97 510.054 253.980	$5/2^{-}$ $(5/2)^{+}$ $(1/2)^{-}$		
_	1975.40	(7/2.9/2)	1888.74 <i>14</i> 1905.74 <i>17</i> 682.25 <i>20</i>	56 <i>13</i> 50 <i>13</i> 43 <i>4</i>	84.32 67.035 1293.35	$(1/2)^{-}$ $5/2^{-}$ $(7/2)^{+}$		
L	1077 54	$(1/2 \text{ to } 7/2^{-})$	700.0 <i>5</i> 1547.45 <i>12</i> 1584 1 2	100 <i>4</i> 69.6 22	1275.15 427.902 303.422	$(7/2)^+$ 9/2 ⁺ 3/2 ⁻		
	1982.50	$(1/2, 3/2, 5/2^{-})$	1326.5 <i>3</i> 1588.5 <i>12</i> 1898.89 <i>23</i>	50 <i>14</i> 64 9 27 <i>14</i>	655.460 393.422 84.32	$3/2^{-}$ $3/2^{-}$ $(1/2)^{-}$		E : poor fit level energy difference - 1808 15
	2039 62	$(13/2^{-})$	1982.24 <i>17</i> 382	1005	0.0	(1/2) $3/2^{-}$ $(11/2^{-})$		E_{γ} . poor int, rever-energy unrerence=1698.13. E_{γ} L.: seen in (¹² C p2p γ) only
	2009.02	(13/2)	746.6 2 862	6.3 12	1293.10 1178.08	$(11/2)^+$ $(9/2^-)$	_	E_{γ} : weak γ observed in $(\alpha, 2n\gamma)$ only. E_{γ} . Weak γ observed in $(\alpha, 2n\gamma)$ only. E_{γ} , I_{γ} : seen in $({}^{12}C, p2n\gamma)$ only.
			1002.6 2	15.5 22	1037.13	(13/2)+	D	E_{γ} : from (α,2nγ). I_{γ} : from (¹² C,p2nγ). Mult.: ΔJ=0, dipole transition from γ(DCO) in (¹² C,p2nγ). 1977He08 in
			1110.4 2	100 3	929.13	(9/2 ⁻)	Q	$(\alpha, 2n\gamma)$ gives Mult.=M1+E2 with $\Delta J=1$ based on $\gamma(\theta)$. E_{γ} : from $(\alpha, 2n\gamma)$. This γ is placed from a separate level with a similar energy to the level for 1002.6 γ by 1977He08 in $(\alpha, 2n\gamma)$, however, there is no strong evidence to support this placement and thus the existence of these two levels and the recent study by 2015Ra20 in ($^{12}C, p2n\gamma$) reports that a 1002 γ and a 1110 γ are from the same level.
	2180.66	(7/2,9/2+)	887.46 18	100 70	1293.35	$(7/2)^+$		I_{γ} : from (¹² C,p2n γ). Mult.: from γ (DCO) in (¹² C,p2n γ) and $\gamma(\theta)$ in (α ,2n γ).
			1001.9 <i>2</i> 1670.81 <i>16</i> 1752.88 <i>20</i>	36 9 45 9 100 9	1178.08 510.054 427.902	$(9/2^{-})$ $(5/2)^{+}$ $9/2^{+}$		E_{γ} : poor fit, level-energy difference=1002.58.

From ENSDF

γ (⁷³As) (continued)

E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
2211.58	(5/2)-	1125.5 6	100 40	1086.97	5/2-		
		1133.4 6	64 <i>30</i>	1077.71	$(3/2)^{-}$		
		2127.4 4	14 7	84.32	$(1/2)^{-}$		
		2144.38 23	21 14	67.035	5/2-		
2311.61	$(7/2, 9/2^+)$	982.75 13	63.6 18	1328.81	$(7/2)^+$		
		1018.52 13	100 4	1293.35	$(1/2)^+$		
		1036.38 9	27.3 18	12/5.15	$(1/2)^{+}$		
		1317.75 21	10.9 18	510.054	(1/2)		
		1801.30 14	50 9 56 4	427 002	(3/2)		
2415 41		1122 3 2	100	1293 10	$(11/2)^+$		
2415.41	$(15/2^{-})$	436.2.2	27.4	2039.62	$(13/2^{-})$	D	E.: from $(\alpha 2n\gamma)$
2175.05	(10/2)	130.2 2	27 7	2057.02	(13/2)	D	Ly. non (α , $2n\gamma$). L : weighted average of 24.7 from ⁶⁴ Ni(¹² C n ² ny) and 28.4 from ⁷¹ Ga(α 2ny)
							γ . weighted average of 247 month in (α , β , β , γ) and 207 month $\Theta(\alpha, \beta, \gamma)$. Mult : from $\gamma(\theta)$ in (α , $2n\gamma$)
		526		1949 82	$(17/2^{+})$		F.: seen in $\binom{12}{\Gamma}$ n 2n γ) only
		81732	100.7	1658 18	$(11/2^{-})$	0	E_{ν} L.: from ($\alpha 2n\nu$) Other: $I\nu = 100.9$ in (¹² C n ² nv)
		017.5 2	100 /	1050.10	(11/2)	×	Mult : from $\gamma(DCO)$ in $({}^{12}C p2n\gamma)$
		1438	42 5	1037-13	$(13/2)^+$		F. I : from $\binom{12}{C}$ n ² n ²) only
2482.82	$(7/2, 9/2^+)$	1153 9 3	100 20	1328 81	$(13/2)^+$		L_{γ}, r_{γ} . Hold ($C, p_{2}n_{\gamma}$) only.
2102.02	(1/2,2/2)	1973.4 4	20 20	510.054	$(5/2)^+$		
		2053.8 6	60 20	427.902	$9/2^+$		
2484.77	$(3/2^{-})$	1407.3 3	33 11	1077.71	$(3/2)^{-}$		
		1910.33 17	39 11	574.55	$(1/2)^{-}$		
		1974.67 18	100 11	510.054	(5/2)+		
		2090.7 <i>3</i>	44 11	393.422	3/2-		
		2400.3 3	17 11	84.32	$(1/2)^{-}$		
		2484.78 21	28 11	0.0	3/2-		
2584.09	$(7/2, 9/2^{-})$	1308.9 2	80 20	1275.15	$(7/2)^+$		
		1400.3 4	40 20	11/8.08	(9/2)		
		2130.04 <i>14</i> 2517 21 25	100 20	427.902	9/2 5/2-		
2622.6		583.0	100 20	2039.62	$(13/2^{-})$		
2848 15	$(17/2^{-})$	373	5212	2039.02	$(15/2^{-})$		$\mathbf{F} = \mathbf{I} \cdot \mathbf{from} \left(\frac{12}{\mathbf{C}} \mathbf{p} 2 \mathbf{n} \mathbf{v} \right)$ only
2070.13	(1//2)	808 5 2	100.3	2039 62	$(13/2^{-})$	0	$E_{\gamma,\gamma}$, non ($C,p2n\gamma$) only. $F_{\gamma,\gamma}$ from (α $2n\gamma$)
		000.5 2	100 5	2059.02	(13/2)	Y	L_{γ} . from $(1/2C n^2 n \gamma)$.
							Mult : from $\gamma(DCO)$ in $\binom{12}{C}$ n $(2n\gamma)$ and $\gamma(\theta)$ in $(\alpha/2n\gamma)$
2965 1	$(21/2^+)$	1015.2.2	100	1949 82	$(17/2^+)$	0	F.: from $(\alpha, 2n\gamma)$.
2703.1	(21/2)	1010.2 2	100	1717.02	(1//2)	×	Mult : from $\gamma(DCO)$ in $\binom{12}{2}$ c $n^2n\gamma$ and $\gamma(\theta)$ in $(\alpha 2n\gamma)$
3050.4	$(19/2^+)$	1100.6 2	100	1949.82	$(17/2^+)$	D	E_{α} : from (α .2n γ).
	(-00	-> .>.02	(1)=)	_	Mult.: from γ (DCO) in (¹² C.p2n γ).
3294.33		1254.7 2	100	2039.62	$(13/2^{-})$		······································
	$(19/2^{-})$	524	~ ~	2848.15	$(17/2^{-})$		
3372.4	(1)[2]				/		

18

$\gamma(^{73}As)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	J_f^π	Mult. [‡]	Comments
3490.6	$(21/2^+)$	440	66 33	3050.4	$(19/2^+)$		
		1541	100 12	1949.82	$(17/2^+)$	0	
3751.2	$(21/2^{-})$	903	100	2848.15	$(17/2^{-})$	ò	
3842.2	$(19/2^{-})$	994	100	2848.15	$(17/2^{-})$	Ď	
4023.6	$(23/2^+)$	974	79 10	3050.4	$(19/2^+)$	0	
		1058	100 15	2965.1	$(21/2^+)$	Ď	
4082.9	$(25/2)^+$	1117.8 2	100	2965.1	$(21/2^+)$	Q	E_{γ} : from $(\alpha, 2n\gamma)$.
4457.4	$(23/2^{-})$	1085	100	3372.4	$(19/2^{-})$	Q	
4586.4	$(25/2^+)$	563	61 11	4023.6	$(23/2^+)$		
		1096	100 14	3490.6	$(21/2^+)$		
		1621	100 11	2965.1	$(21/2^+)$	Q	
4870.2	$(25/2^{-})$	1119	100	3751.2	$(21/2^{-})$	Q	
4964.2	$(23/2^{-})$	1122	100	3842.2	$(19/2^{-})$		
5118.2		1276	100	3842.2	$(19/2^{-})$		
5411.7	$(27/2^+)$	1388	100	4023.6	$(23/2^+)$		
5411.9	$(29/2^+)$	1329	100	4082.9	$(25/2)^+$	Q	
5686.4	$(27/2^{-})$	1229	100	4457.4	$(23/2^{-})$	Q	
5953.4	$(29/2^+)$	1367	100	4586.4	$(25/2^+)$		
6132.2	$(29/2^{-})$	1262	100	4870.2	$(25/2^{-})$	Q	
6311.2	$(27/2^{-})$	1347	100	4964.2	$(23/2^{-})$		
6908.9	$(33/2^+)$	1497	100	5411.9	$(29/2^+)$	Q	
7434.2	$(33/2^{-})$	1302	100	6132.2	$(29/2^{-})$	Q	
7861.1	(3/2, 5/2)	5887	74	1975.40	(7/2, 9/2)		
		6000	<10	1860.8			
		6269	100	1591.6	$(3/2)^{-}$		
		6561	95	1299.35	$(1/2^{-}, 3/2)$		
		6647	24	1216.3	$(3/2)^{-}$		
		7010	28	850.515	$(5/2)^{-}$		
		7091	55	769.821	$5/2^{-}$		
		7205	87	655.460	$3/2^{-}$		
		7285	73	574.55	$(1/2)^{-}$		
		7465	81	393.422	$3/2^{-}$		
		7606	43	253.980	$(1/2)^{-}$		
		7776	83	84.32	$(1/2)^{-}$		
		7794	68	67.035	5/2-		
		7861	92	0.0	3/2-		
8610.9	$(37/2^+)$	1702	100	6908.9	$(33/2^+)$		
8788.2	$(37/2^{-})$	1354	100	7434.2	$(33/2^{-})$		

[†] From $(p,n\gamma)$, unless otherwise noted. For some gammas, branching ratios are already deduced by 1997So08 in $(p,n\gamma)$ dataset (given under comments there) by including more $(p,n\gamma)$ measurements in addition to the quoted relative I γ values from one of their measurements, and therefore are adopted here, instead of those

From ENSDF

 $\gamma(^{73}\text{As})$ (continued)

deduced from relative I γ values in (p,n γ).

[±] From ce data in ⁷³Se ε decay (39.8 min) and/or (p,n γ) up to 1977 level and from γ (DCO) in (¹²C,p2n γ) above that, unless otherwise noted. [#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Multiply placed with intensity suitably divided.
 [&] Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

 $^{73}_{33}As_{40}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{73}_{33} As_{40} \\$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{73}_{33} As_{40}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{73}_{33}As_{40}$

 $^{73}_{33}As_{40}$

 $^{73}_{33}As_{40}$