74 Se(d, 3 He) 1983Ro08

History				
Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh and Jun Chen	NDS 158, 1 (2019)	16-May-2019	

1983Ro08: E=25.2 MeV. Measured $\sigma(\theta)$, θ =6°-33°, FWHM=9-13 keV. DWBA calculations.

⁷³As L<u>evels</u>

E(level)	L^{\dagger}	C^2S^{\ddagger}	Comments
0.0	1	2.36	
67.8 20	3	2.0 [#]	
84.7 20	1	0.25	
255.8 <i>30</i>	1	0.40	
397 <i>4</i>	1	0.37	
430 <i>4</i>	4	0.90	
514 5	2	0.16	
581 5	1+3	0.027,0.2#	E(level): Unresolved doublet.
658 <i>6</i>	1	0.11	
772 6	3,(4)	0.1,0.13#	
861 7	3	0.38	
887 <i>7</i>	0	0.017	
994 <mark>&</mark>			C^2S : <0.02 for assumed L=1; but adopted $J^{\pi}=(7/2)^{-1}$ implies L=3.
1081 7	1	0.16	
1217 8	1	0.23	
1351 8	3	0.14	
1592 8	1	0.03	
1614 <i>6</i>	3	1.04	
1981 7	1	0.08	
2135 10	1	0.08	

[†] From comparison with DWBA calculations.

[‡] Except where noted, the following spins have been assumed in deducing C²S: 3/2 for L=1; 5/2 for L=2; 7/2 for L=3; and 9/2 for L=4, implying active proton orbitals $p_{3/2}$, $d_{5/2}$ and $f_{7/2}$. The quoted value should be multiplied by 1.2 for L=1, J=1/2; and by 1.7

 $^{^{\}textcircled{@}}$ For $1/2^-$ (or $p_{1/2}$ proton orbital). & Partly contributed by 75 As g.s. peak. Rounded-off energy from Adopted Levels.