64 Ni(12 C,p2n γ) 2015Ra20

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 158, 1 (2019)	16-May-2019

2015Ra20 (also 2012Ra22): 55 MeV ¹²C beam from the 15UD Pelletron at the Inter-University Accelerator Center (IUAC), New Delhi. Target=enriched, $\approx 1.5 \text{ mg/cm}^2$ thick ⁶⁴Ni target with a thick Au backing. The γ -rays were detected using Gamma Detector Array (GDA) consisting of 12 Compton-suppressed n-type HPGe detectors with anti-Compton shields. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$ (DCO). Deduced high-spin levels, J^{π} , multipolarities, alignments, configurations. Results discussed in the context of triaxial particle-rotor model, cranked shell model and relativistic mean-field calculations.

⁷³As Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	$3/2^{-}$	
67.0 [#] 7	5/2-	
428.1 ^{&} 10	$9/2^{+}$	
577.0 7	7/2-	J^{π} : $5/2^{-}$ in Adopted Levels.
861.0 [@] 7	7/2-	
929.2 [#] 9	9/2-	
1037.1 ^{&} 10	$13/2^{+}$	
1177.9 8	9/2-	
1293.1 12	$11/2^{+}$	
1657.9 ^{••} 8	11/2-	
1/61.1 12	17/0+	
1948.9 ^{cc} 12	17/2	
2039.8" 9	13/2	
2474.7° 10	15/2	
2847.7" 11	$17/2^{-1}$	
2965.7°C 14	$21/2^{+}$	
3049.9^{a} 14	19/2(1)	
33/1.7 I2	19/2	
3490.1^{\bullet} 14	21/2(+)	
3750.7# 15	$21/2^{-}$	
3841.7° 13 4022.7° 14	$\frac{19}{2}$	
4023.7 14	25/2	
4456.7 ^{<i>a</i>} 16	$23/2^{-}$	
4586.5 ^b 14	$(25/2^+)$	
4869.7 [#] 18	25/2-	
4963.7 ^c 18	$(23/2^{-})$	
5117.8 18		
5411.7 ^{<i>a</i>} 18	$(27/2^+)$	
5411.8 ^{x} 20	$29/2^+$	
5685.7 ^w 19	$27/2^{-}$	
5953.5 ⁰ 18	$(29/2^+)$	
6131.8 [#] 20	29/2-	
6310.8° 20	$(27/2^{-})$	
6908.7° 22	33/2+	
7433.8 " 23	33/2-	

⁶⁴Ni(¹²C,p2nγ) 2015Ra20 (continued)

⁷³As Levels (continued)

E(level) [†]	Jπ‡		
8610.8 ^{&} 24	$(37/2^+)$		
8787.8 [#] 25	$(37/2^{-})$		

[†] From least-squares fit to $E\gamma$ data, assuming $\Delta E\gamma = 1$ keV for each $E\gamma$.

- [‡] As proposed in 2015Ra20, based on previous assignments for low-lying low-spin levels, and DCO data and band assignments for high-spin levels.
- [#] Band(A): Favored band based on $5/2^-, \alpha = +1/2$. At low spins, configuration= $\pi (2p_{3/2} 1f_{5/2} 2p_{1/2})^5$. First band crossing at $\hbar\omega \approx 0.45$ MeV due to pair of $g_{9/2}$ neutrons, second possible band crossing at $\hbar\omega \approx 0.6$ MeV due to pair of $g_{9/2}$ protons; 3qp configuration after first crossing and 5qp configuration after second band crossing.
- ^(a) Band(a): Unfavored band based on $7/2^-$, $\alpha = -1/2$. At low spins, configuration = $\pi (2p_{3/2} 1f_{5/2} 2p_{1/2})^5$. First band crossing at $\hbar \omega \approx 0.45$ MeV due to pair of $g_{9/2}$ neutrons, 3qp configuration after first crossing.
- & Band(B): Band built on $\pi g_{9/2}, \alpha = +1/2$. Decoupled (favored) band. At low spins, configuration is $\pi g_{9/2}$, while at higher spins, configuration= $\pi g_{9/2} \otimes v g_{9/2}^2$. Unfavored partner of this band is not seen.
- ^{*a*} Band(C): Band based on $19/2^{(+)}$.
- ^b Band(c): Band based on $21/2^{(+)}$.
- ^c Band(D): Band based on $19/2^{(-)}$.

 $\gamma(^{73}\text{As})$

 R_{DCO} were measured by gating on $\Delta J=2$ stretched quadrupole transitions where expected DCO ratios are ≈ 1 for stretched quadrupole transitions, and ≈ 0.5 for stretched dipole transitions.

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	Comments
67		67.0	5/2-	0.0	3/2-		
317	0.6 3	1177.9	9/2-	861.0	$7/2^{-}$		
361		428.1	9/2+	67.0	$5/2^{-}$		
373	1.8 4	2847.7	$17/2^{-}$	2474.7	$15/2^{-}$		
382	2.1 4	2039.8	$13/2^{-}$	1657.9	$11/2^{-}$		
434	3.3 9	2474.7	$15/2^{-}$	2039.8	$13/2^{-}$		
440	0.8 4	3490.1	$21/2^{(+)}$	3049.9	$19/2^{(+)}$		
468	1.2 3	1761.1		1293.1	$11/2^{+}$		
480	4.2 5	1657.9	$11/2^{-}$	1177.9	9/2-	(D)	DCO=0.68 14
510	5.4 9	577.0	$7/2^{-}$	67.0	$5/2^{-}$		
524	†	3371.7	19/2-	2847.7	$17/2^{-}$		
526	†	2474.7	$15/2^{-}$	1948.9	$17/2^{+}$		
563	2.2 4	4586.5	$(25/2^+)$	4023.7	$23/2^{(+)}$		
577	2.5 3	577.0	$7/2^{-}$	0.0	$3/2^{-}$		
601	3.7 3	1177.9	9/2-	577.0	7/2-		
609	100	1037.1	$13/2^{+}$	428.1	9/2+		
724	2.2 4	1761.1		1037.1	$13/2^{+}$		
729	1.8 4	1657.9	$11/2^{-}$	929.2	9/2-		
794	7.5 8	861.0	$7/2^{-}$	67.0	$5/2^{-}$	D	DCO=0.64 11
797	10.7 7	1657.9	$11/2^{-}$	861.0	$7/2^{-}$	Q	DCO=1.02 10
808	34.3 10	2847.7	$17/2^{-}$	2039.8	$13/2^{-}$	Q	DCO=1.10 9
817	14.0 12	2474.7	$15/2^{-}$	1657.9	$11/2^{-}$	Q	DCO=1.12 16
861	10.5 9	861.0	$7/2^{-}$	0.0	3/2-	Q	DCO=1.12 11
862 [‡]	71.2 [‡] <i>11</i>	929.2	9/2-	67.0	5/2-	Q	DCO=1.01 9

Continued on next page (footnotes at end of table)

⁶⁴Ni(¹²C,p2nγ) 2015Ra20 (continued)

$\gamma(^{73}\text{As})$ (continued)

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	Comments
862	$2.6^{\ddagger} 5$	2039.8	$13/2^{-}$	1177 9	9/2-		
865	2.1 7	1293.1	$13/2^+$	428.1	$9/2^+$		
897	9.6 7	3371.7	$19/2^{-}$	2474.7	$15/2^{-}$	0	DCO=1.15 15
903	20.3 9	3750.7	$21/2^{-}$	2847.7	$17/2^{-}$	ò	DCO=1.12 7
912	78.3 9	1948.9	$17/2^{+}$	1037.1	$13/2^{+}$	ò	DCO=0.98 4
974	3.1 4	4023.7	$23/2^{(+)}$	3049.9	$19/2^{(+)}$	Õ	DCO=1.13 18
994	4.5 5	3841.7	$19/2^{(-)}$	2847.7	$17/2^{-}$	Ď	DCO=0.54 21
1002	6.4 9	2039.8	$13/2^{-}$	1037.1	$13/2^+$	D	DCO=0.92 13
			,		1		Mult.: $\Delta J=0$, dipole transition.
1017	48.9 10	2965.7	$21/2^{+}$	1948.9	$17/2^{+}$	Q	DCO=1.05 11
1058	3.9 6	4023.7	$23/2^{(+)}$	2965.7	$21/2^{+}$	D	DCO=0.71 14
1085	5.9 8	4456.7	$23/2^{-}$	3371.7	$19/2^{-}$	Q	DCO=1.15 15
1096	3.6 5	4586.5	$(25/2^+)$	3490.1	$21/2^{(+)}$	-	
1101	9.2 7	3049.9	$19/2^{(+)}$	1948.9	$17/2^{+}$	D	DCO=0.72 13
1110	41.3 13	2039.8	$13/2^{-}$	929.2	$9/2^{-}$	0	DCO=0.99 5
1111	4.6 7	1177.9	$9/2^{-}$	67.0	$5/2^{-}$	ò	DCO=1.17 14
1117	26.5 12	4082.7	$\frac{1}{25/2^{+}}$	2965.7	$21/2^{+}$	Q	DCO=0.98 10
1119	8.19	4869.7	$25/2^{-}$	3750.7	$21/2^{-}$	Q	DCO=1.10 12
1122	1.3 4	4963.7	$(23/2^{-})$	3841.7	$19/2^{(-)}$		
1229	4.3 4	5685.7	$27/2^{-1}$	4456.7	$23/2^{-}$	Q	DCO=1.15 16
1262	7.2 7	6131.8	29/2-	4869.7	$25/2^{-}$	Q	DCO=1.16 17
1276	0.7 5	5117.8		3841.7	$19/2^{(-)}$		
1302	4.5 6	7433.8	33/2-	6131.8	29/2-	Q	DCO=1.20 17
1329	9.7 6	5411.8	29/2+	4082.7	$25/2^+$	Q	DCO=1.08 11
1347	1.0 5	6310.8	$(27/2^{-})$	4963.7	$(23/2^{-})$		
1354	1.5 7	8787.8	$(37/2^{-})$	7433.8	33/2-		
1367	0.9 4	5953.5	$(29/2^+)$	4586.5	$(25/2^+)$		
1388	0.9 5	5411.7	$(27/2^+)$	4023.7	$23/2^{(+)}$		
1438	5.9 7	2474.7	$15/2^{-}$	1037.1	$13/2^{+}$		DCO=1.65 19
							DCO value is inconsistent with $15/2^-$ to $13/2^+$, dipole
							transition as given in Table I of 2015Ra20. DCO is also too
							large for $\Delta J=2,Q$ or $\Delta J=0$, dipole. It seems consistent with
1 407	10.6	(000 7	22/2+	5411.0	20/2+	0	$\Delta J=0$ or 1, dipole with significant quadrupole admixture.
149/	4.0 0	0908.7	$\frac{55}{2}$	5411.8	29/2	Q	DCU=1.1/1/
1541	5.87	3490.1	$21/2^{(+)}$	1948.9	$1/2^{+}$	Q	DCU=1.21 10
1621	3.6 4	4586.5	$(25/2^+)$	2965.7	$21/2^{+}$	Q	DCU=1.1/18
1/02	2.9.5	8610.8	$(37/2^{+})$	6908.7	33/21		

[†] Intensity is not listed in Table I of 2015Ra20. From the width of the arrow in authors' level-scheme Fig. 1, I γ is estimated as <2. [‡] Multiply placed with intensity suitably divided. ⁶⁴Ni(¹²C,p2nγ) 2015Ra20

 $^{73}_{33}As_{40}$

⁶⁴Ni(¹²C,p2nγ) 2015Ra20

 $^{73}_{33}As_{40}$