Adopted Levels

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh	ENSDF	11-Jun-2021	

 $S(n)=14110 SY; S(p)=-710 SY; Q(\alpha)=-1960 SY$ 2021Wa16

Estimated uncertainties (2021Wa16): $\Delta S(n)=640$, $\Delta S(p)=520$, $\Delta Q(\alpha)=560$.

 $S(2p)=1480\ 500,\ Q(\varepsilon)=15610\ 500,\ Q(\varepsilon p)=10880\ 500\ (syst,\ 2021Wa16).\ S(2n)=31180\ (theory,\ 2019Mo01).$ 2017Su31: ⁷²Rb nuclide produced and identified in ⁹Be(¹²⁴Xe,X),E(¹²⁴Xe)=345 MeV/nucleon fragmentation reaction at RIBF-RIKEN facility. Measured (implants) correlated events using BigRIPS and ZeroDegree spectrometers for the separation and tagging of nuclei through event-by-event analysis to identify atomic number Z and A/q (atomic mass/charge) ratio by $B\rho$ -tof- ΔE technique, $B\rho$ measured using parallel-plate avalanche counters, tof by plastic scintillators, and ΔE by ionization chambers. The secondary ion beam was finally implanted into the active silicon stopper WAS3ABi with subsequent detection of β^+ , and proton-delayed γ -rays using the EURICA HPGe detector array. Deduced half-life of ⁷²Rb g.s. decay. Total of 14 events were ascribed to ⁷²Rb in the present experiment. Deduced half-life of 103 ns is consistent with its proton-unbound character with S(p)=-710 keV 520 (syst, 2017Wa10).

2019Si33: calculated g.s. configuration and compared with proton decay of ⁷⁶Y. Additional information 1.

⁷²Rb Levels

E(level)	T _{1/2}	Comments
0	103 ns 22	 ^wp=?; %ε+%β⁺=? Proton decay mode of ⁷²Rb is expected to be dominant, as S(p) value is negative from a systematic trend (2021Wa16), and theoretical T_{1/2}(β decay)=28.4 ms (2019Mo01). E(level): observed events assumed to correspond to the g.s. of ⁷²Rb. T_{1/2}: estimated by 2017Su31, based on time-of-flight of 769.0 ns through the BigRIPS and the ZeroDegree spectrometers, and comparison of expected activity with the measured yield for ⁷²Rb, where the expected activity was determined from quadratic interpolation of the measured yields for neighboring rubidium nuclides, giving expected 10020 230 events versus 14 observed events, resulting in estimated half-life of 81-124 ns. J^π: from S(p) and finite-range droplet model and shell model calculations, 2017Su31 suggested the proton transition is either 5⁺ to 5/2⁻ state in ⁷¹Kr, or 9⁺ to 9/2⁺ state in ⁷¹Kr, with preference for the former assignment. From density functional theory calculations using Skyrme functional UNEDF0, and comparison with the structure and decay of ⁷⁶Y g.s., 2019Si33 proposed oblate ground state for ⁷²Rb, with deformation β=-0.14, and the most likely configuration=π3/2[321]⊗v1/2[321], J^π=1⁺ for the g.s. from G-M rule, in agreement with established 1⁺ g.s. of mirror nucleus ⁷²Br. However, 2019Si33 did not rule out the possibility that the observed decays in both the nuclides may be due to excited states, with a possible 5⁺ state in both the nuclei. Other: 1⁺ or 8⁺ from Ω_p=7/2⁺ and Ω_n=9/2⁺ (2019Mo01, theory).