$^{72}{\rm Kr}\,\varepsilon$ decay 2003Pi03

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	D. Abriola(a), A. A. Sonzogni	NDS 111,1 (2010)	1-May-2009						

⁷²Br Levels

Parent: ⁷²Kr: E=0; $J^{\pi}=0^+$; $T_{1/2}=17.1$ s 2; $Q(\varepsilon)=5129 \ 10$; $\%\varepsilon+\%\beta^+$ decay=100.0

⁷²Kr-%ε+%β⁺ decay: %εp<1×10⁻⁴. Measured Eγ, Iγ, γγ, βγγ coin, T_{1/2} of ⁷²Kr isotope using two HPGe detectors, and a tape transport system connected with a HPGe γ -counter and a Si(Li) detector.

Others: 1973Da22, 1973Sc17, 1980DaZO.

E(level) [†]	J^{π}	T _{1/2} ‡	E(level) [†]	J^{π}	E(level) [†]	J^{π}
0.0	1^{+}	78.6 s 24	509.7 <i>3</i>	1	1173.2 <i>3</i>	$1^{(+)}$
101.14 19	(3 ⁻)	10.6 s 3	545.58 <i>13</i>		1322.8 4	$1^{(+)}$
124.22 9	1		575.83 12	1^{+}	1386.08 15	1^{+}
131.70 21	(2^{-})		576.79 21	1^{+}	1604.93 20	1^{+}
162.72 7			682.4 4	$1^{(+)}$	1703.8 4	1^{+}
218.79 19	$1^{(-)}$		707.97 17	1	1772.05 18	1^{+}
309.92 7	1^{+}		722.13 15	$1^{(+)}$	1799.5 <i>3</i>	1+
313.75 21	1		755.57 23	1^{+}	1835.53 18	1^{+}
328.52 12	1		795.89 14		1943.5? 7	1
379.10 22	1		901.99 <i>19</i>	1^{+}	1950.0? 7	1
392.70 15			939.27 15	1^{+}	1988.4? 10	1
398.39 12	(2)		1027.80 18	1^{+}	3304.9? 10	1^{+}
415.15 9	1^{+}		1154.30 19	1		

[†] From least-squares fit to $E\gamma's$.

[‡] from Adopted Levels.

E(decay)	E(level)	I β^+ [†]	$I\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(1824 [‡] 10)	3304.9?	0.038 5	0.116 16	4.53 6	0.154 21	av Eβ=348.6 44; εK=0.664 7; εL=0.0766 8; εM+=0.01535 17
(3141 [‡] <i>10</i>)	1988.4?	0.022 4	0.0030 6	6.60 9	0.025 5	av Eβ=941.3 47; εK=0.1044 14; εL=0.01198 16; εM+=0.00240 4
(3179 [‡] <i>10</i>)	1950.0?	0.036 7	0.0046 9	6.41 9	0.041 8	av Eβ=959.1 47; εK=0.0994 13; εL=0.01140 15; εM+=0.00228 3
(3186 [‡] 10)	1943.5?	0.054 11	0.0068 14	6.25 9	0.061 12	av Eβ=962.1 47; εK=0.0986 13; εL=0.01131 15; εM+=0.00226 3
(3293 10)	1835.53	0.69 4	0.076 4	5.233 25	0.77 4	av Eβ=1012.3 47; εK=0.0863 11; εL=0.00989 13; εM+=0.001980 25
(3330 10)	1799.5	0.32 5	0.033 5	5.60 7	0.35 5	av Eβ=1029.0 47; εK=0.0826 10; εL=0.00947 12; εM+=0.001895 23
(3357 10)	1772.05	2.63 11	0.263 12	4.708 21	2.89 12	av Eβ=1041.8 47; εK=0.0799 10; εL=0.00916 11; εM+=0.001834 22
(3425 10)	1703.8	0.30 5	0.028 4	5.70 7	0.33 5	av Eβ=1073.6 47; εK=0.0738 9; εL=0.00846 10; εM+=0.001692 20
(3524 10)	1604.93	0.47 11	0.038 9	5.59 11	0.51 12	av Eβ=1119.9 47; εK=0.0659 8; εL=0.00755 9; εM+=0.001511 18
(3743 10)	1386.08	1.86 15	0.117 10	5.15 4	1.98 16	av Eβ=1222.5 47; εK=0.0519 6; εL=0.00595 7; εM+=0.001191 13

 ε, β^+ radiations

72 Kr ε decay 2003Pi03 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Ιβ ⁺ †	$I\varepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
(3806 10)	1322.8	0.224 22	0.0131 13	6.12 5	0.237 23	av E β =1252.3 48; ε K=0.0487 5; ε L=0.00557 6;
(3956 10)	1173.2	0.31 4	0.016 2	6.07 6	0.33 4	εM +=0.001115 <i>12</i> av E β =1322.9 <i>48</i> ; εK =0.0419 <i>5</i> ; εL =0.00480 <i>5</i> ; εM +=0.000960 <i>10</i>
(3975 10)	1154.30	0.13 6	0.007 3	6.46 19	0.14 6	av $E\beta$ =1331.8 48; ε K=0.0411 4; ε L=0.00471 5; ε M = -0.00042 10
(4101 10)	1027.80	1.60 13	0.069 6	5.46 4	1.67 14	av E β =1391.7 48; ϵ K=0.0364 4; ϵ L=0.00417 4;
(4190 10)	939.27	1.04 5	0.0412 20	5.706 22	1.08 5	av $E\beta = 1433.7 \ 48; \ \epsilon K = 0.0336 \ 3; \ \epsilon L = 0.00384 \ 4;$
(4227 10)	901.99	0.83 15	0.032 6	5.83 9	0.86 16	av $E\beta$ =1451.4 48; ε K=0.0325 3; ε L=0.00372 4;
(4333 10)	795.89	0.19 14	0.007 5	6.5 4	0.20 15	av $E\beta$ =1501.8 48; ε K=0.0295 3; ε L=0.00338 3;
(4373 10)	755.57	1.50 12	0.050 4	5.66 4	1.55 12	av $E\beta$ =1521.0 48; ε K=0.02852 25; ε L=0.00327 3;
(4407 10)	722.13	0.53 6	0.017 2	6.13 5	0.55 6	av $E\beta$ =1536.9 48; ε K=0.02771 24; ε L=0.00317 3;
(4421 10)	707.97	0.6 3	0.02 1	6.10 22	0.6 3	av $E\beta$ =1.5000053 6 av $E\beta$ =1.543.7 48; ε K=0.02738 24; ε L=0.00313 3;
(4447 10)	682.4	0.61 4	0.019 1	6.09 <i>3</i>	0.63 4	av $E\beta$ =155.9 48; ε K=0.02679 23; ε L=0.00307 3;
(4552 10)	576.79	13.0 8	0.374 23	4.82 3	13.4 8	av $E\beta$ =1606.2 48; ε K=0.02453 21; ε L=0.002807
(4553 10)	575.83	1.44 18	0.041 5	5.78 6	1.48 19	av E β =1606.7 48; ε K=0.02451 21; ε L=0.002805 24: ε M+=0.000561 5
(4583 [‡] 10)	545.58	< 0.15	< 0.0041	>6.8	< 0.15	av $E\beta$ =1621.1 48; ε K=0.02391 20; ε L=0.002736 23: ε M+=0.000548 5
(4619 10)	509.7	0.35 10	0.010 3	6.43 12	0.36 10	av $E\beta$ =1638.3 48; ε K=0.02322 19; ε L=0.002658 22: ε M±=0.000532 5
(4714 10)	415.15	15.8 9	0.397 23	4.83 3	16.2 9	av E β =1683.5 48; ε K=0.02153 17; ε L=0.002464 20; ε M+=0.000493 4
(4731 [‡] 10)	398.39	< 0.010	< 0.0002	>8.0	< 0.01	av Eβ=1691.5 48; εK=0.02125 17; εL=0.002432 20; εM+=0.000487 4
(4736 [‡] 10)	392.70	< 0.04	< 0.0010	>7.4	< 0.04	av $E\beta$ =1694.2 48; ε K=0.02116 17; ε L=0.002421 20: ε M+=0.000484 4
(4750 10)	379.10	0.33 17	0.008 4	6.52 22	0.34 17	av $E\beta$ =1700.7 48; ε K=0.02093 17; ε L=0.002395 19: ε M+=0.000479 4
(4800 10)	328.52	0.50 7	0.012 2	6.37 6	0.51 7	av $E\beta$ =1725.0 48; ε K=0.02013 16; ε L=0.002303 18: ε M+=0.000461 4
(4815 10)	313.75	0.39 10	0.0091 23	6.49 11	0.40 10	av $E\beta$ =1732.0 48; ε K=0.01990 16; ε L=0.002277 18: ε M+=0.000456 4
(4819 10)	309.92	16.4 6	0.379 14	4.864 18	16.8 6	av $E\beta$ =1733.9 48; ε K=0.01984 16; ε L=0.002270 18: ε M+=0.000454 4
(4910 10)	218.79	0.49 20	0.011 4	6.44 18	0.50 20	av E β =1777.6 48; ε K=0.01851 14; ε L=0.002118 16; ε M+=0.000424 4
(4966 [‡] 10)	162.72	<0.4	< 0.008	>6.6	<0.4	av Eβ=1804.5 48; εK=0.01776 14; εL=0.002032 16; εM+=0.000406 3
(4997 [‡] 10)	131.70	< 0.10	< 0.002	>7.2	<0.1	av Eβ=1819.4 48; εK=0.01736 13; εL=0.001986 15: εM+=0.000397 3
(5005 10)	124.22	1.0 6	0.020 12	6.2 3	1.0 6	av E β =1822.9 48; ε K=0.01726 13; ε L=0.001975 15; ε M+=0.000395 3
(5028 [‡] 10)	101.14	<1.6	< 0.031	>6.0	<1.6	av Eβ=1834.0 48; εK=0.01697 13; εL=0.001942 15: εM+=0.000388 3
(5129 10)	0.0	34.4 10	0.628 20	4.699 15	35.0 10	av E β =1882.6 48; ε K=0.01578 12; ε L=0.001805

Continued on next page (footnotes at end of table)

$^{72}{\rm Kr}\,\varepsilon$ decay 2003Pi03 (continued)

 ϵ, β^+ radiations (continued)

E(decay) E(level) Comments

13; εM+=0.000361 *3*

 $I(\varepsilon + \beta^+)$: deduced by 2003Pi03 from parent-daughter activities.

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

From ENSDF

 $\gamma(^{72}{\rm Br})$

I γ normalization, I(γ +ce) normalization: from Σ (I(γ +ce) of γ 's to g.s.)= 65 *I*, using feeding to g.s.= 35.0 *10* (2003Pi03). 2003Pi03 give I γ normalization= 0.1533 24.

E_{γ}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [†]	α [#]	$I_{(\gamma+ce)}$ ‡	Comments
30.5 5	1.11 <i>19</i>	131.70	(2 ⁻)	101.14 (3 ⁻)	(M1+E2)	3.×10 ¹ 3	24 4	$\alpha(\exp)=20.7 \ (2003Pi03); \ ce(K)/(\gamma+ce)=0.7 \ 5; \ ce(L)/(\gamma+ce)=0.3 \ 3; \ ce(M)/(\gamma+ce)=0.04 \ 6; \ ce(N)/(\gamma+ce)=0.003 \ 4 \ Mult : from \alpha(exp)$
$38.8\ 2$	1.1 3	162.72		124.22 1			3.0 7	I_{γ} : calculated assuming M γ =M1.
87.2 5	5.3 8	218.79	1 ⁽⁻⁾	131.70 (2 ⁻)	[M1]	0.167 4	6.2 9	$ce(K)/(\gamma+ce)=0.1267\ 24;\ ce(L)/(\gamma+ce)=0.0141\ 3;\ ce(M)/(\gamma+ce)=0.00224\ 5;\ ce(N)/(\gamma+ce)=0.000208\ 5$
88.5 5	0.5 4	398.39	(2)	309.92 1+			0.6 5	I_{γ} : calculated assuming $M\gamma = M1$.
91.5 5	0.30 6	309.92	1+	218.79 1 ⁽⁻⁾	[E1]	0.1102 24	0.33 7	$ce(K)/(\gamma+ce)=0.0882$ 18; $ce(L)/(\gamma+ce)=0.00946$ 21; $ce(M)/(\gamma+ce)=0.00149$ 4; $ce(N)/(\gamma+ce)=0.000135$ 3
101.3 3	15.3 19	101.14	(3 ⁻)	0.0 1+	(M2)	1.145 21	33 4	$ce(K)/(\gamma+ce)=0.460 5; ce(L)/(\gamma+ce)=0.0625 12; ce(M)/(\gamma+ce)=0.01008 21; ce(N)/(\gamma+ce)=0.000912 19$
^x 102.8								
105.3 <i>I</i>	3.1 <i>3</i>	415.15	1+	309.92 1+	[M1]	0.0995	3.4 3	$\begin{array}{l} \text{ce(K)}/(\gamma + \text{ce}) = 0.0801 \ 11; \ \text{ce(L)}/(\gamma + \text{ce}) = 0.00886 \ 13; \\ \text{ce(M)}/(\gamma + \text{ce}) = 0.001411 \ 21; \ \text{ce(N)}/(\gamma + \text{ce}) = 0.0001310 \ 19 \end{array}$
117.8 5	0.51 12	218.79	1 ⁽⁻⁾	101.14 (3 ⁻)	[M1]	0.0733 14	0.55 13	$ce(K)/(\gamma+ce)=0.0605 \ 11; \ ce(L)/(\gamma+ce)=0.00668 \ 13; \ ce(M)/(\gamma+ce)=0.001063 \ 20; \ ce(N)/(\gamma+ce)=9.87 \times 10^{-5} \ 18$
124.4 2	22.4 20	124.22	1	0.0 1+			31.2 28	I_{ν} : Calculated assuming M ν =E2.
130.5 5	0.69 11	509.7	1	379.10 1	[M1]	0.0557 10	0.73 12	$ce(K)/(\gamma+ce)=0.0467 \ 8; ce(L)/(\gamma+ce)=0.00514 \ 9; ce(M)/(\gamma+ce)=0.000818 \ 75; ce(N)/(\gamma+ce)=7.60\times10^{-5} \ 14$
132.5 5	0.22 4	707.97	1	575.83 1+			0.23 4	I_{ν} : calculated assuming $M\nu = M1$.
146.2 4	0.14 10	722.13	$1^{(+)}$	575.83 1+			0.14 10	I_{ν} : calculated assuming M ν =M1.
$147.2^{@}$ 1	$34^{@}$ 3	309.92	1+	162.72			353	V_{ν} calculated assuming $M_{\nu} = (M1)$
$147.2^{@}$ 1	$0.60^{@} 23$	545 58		398 39 (2)			010 0	
160.8 6	0.70.8	575.83	1+	415.15 1+				
162.7 1	60 5	162.72		0.0 1+			69 <i>6</i>	I_{γ} : calculated assuming M γ =E2.
166.1 7	0.70 14	328.52	1	162.72			0.72 14	I_{γ} : calculated assuming M γ =M1.
177.2 5	0.86 8	575.83	1+	398.39 (2)	[M1]	0.0248	0.88 8	$ce(K)/(\gamma+ce)=0.0215 \ 4; ce(L)/(\gamma+ce)=0.00234 \ 4; ce(M)/(\gamma+ce)=0.000372 \ 6; ce(N)/(\gamma+ce)=3.47\times10^{-5} \ 6$
178.5 5	16.1 <i>13</i>	309.92	1+	131.70 (2-)	[E1]	0.01519 25	16.3 <i>13</i>	$ce(K)/(\gamma+ce)=0.01331\ 22;\ ce(L)/(\gamma+ce)=0.001411\ 23;\ ce(M)/(\gamma+ce)=0.00023\ 4;\ ce(N)/(\gamma+ce)=2\ 05\times10^{-5}\ 4$
183.3 5	1.76 22	575.83	1^{+}	392.70			1.80 22	I_{ν} : calculated assuming $M\nu = M1$.
185.5 7	0.18 11	309.92	1+	124.22 1			0.18 11	,
^x 186.8								
196.2 [@] 5	2.3 [@] 8	415.15	1+	218.79 1 ⁽⁻⁾	[E1]	0.01152 19	2.3 8	ce(K)/(γ +ce)=0.01013 <i>16</i> ; ce(L)/(γ +ce)=0.001073 <i>17</i> ; ce(M)/(γ +ce)=0.000170 <i>3</i> ; ce(N)/(γ +ce)=1.566×10 ⁻⁵ <i>25</i>

4

 $^{72}_{35}\mathrm{Br}_{37}$ -4

⁷² Kr ε decay 2003Pi03 (continued)												
	γ ⁽⁷² Br) (continued)											
E_{γ}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	α #	$I_{(\gamma+ce)}$ ‡	Comments				
196.2 [@] 5	1.1 [@] 6	509.7	1	313.75 1	[M1]	0.0191	1.1 6	ce(K)/(γ +ce)=0.0166 3; ce(L)/(γ +ce)=0.00180 3; ce(M)/(γ +ce)=0.000287 5; ce(N)/(γ +ce)=2.67×10 ⁻⁵ 5				
199.8 <mark>&</mark> 5		509.7	1	309.92 1+								
204.4 2	0.65 12	328.52	1	124.22 1			0.66 12	I_{γ} : calculated assuming M γ =M1.				
208.9 <i>3</i>	4.2 3	309.92	1^{+}	101.14 (3-)			4.2 3					
218.8 5	0.38 14	218.79	1(-)	0.0 1+	[E1]		0.38 14	$\begin{array}{l} \text{ce(K)}/(\gamma + \text{ce}) = 0.00741 \ 12; \ \text{ce(L)}/(\gamma + \text{ce}) = 0.000784 \ 13; \\ \text{ce(M)}/(\gamma + \text{ce}) = 0.0001240 \ 20; \ \text{ce(N)}/(\gamma + \text{ce}) = 1.146 \times 10^{-5} \ 18 \end{array}$				
*226.5	0.05.10	202 70		1(2.72			0 00 10					
230.1 3	2.35 18	392.70		162.72			2.38 18	I_{γ} : calculated assuming M γ =M1.				
231.8° 3		545.58		313.75 1								
*233.9		545 50		200.02.1+								
235.5 4	3.24 24	545.58	1+	309.92 1			1555					
252.4 2	15.3 5	415.15	1	102.72			15.5 5	I_{γ} : calculated assuming M γ =M1.				
254.9 5 x257 8	1.23 9	379.10	1	124.22 1								
265.7 2	3.03 15	575.83	1^{+}	309.92 1+	[M1]		3.06 15	ce(K)/(γ +ce)=0.00777 11; ce(L)/(γ +ce)=0.000837 12; ce(M)/(γ +ce)=0.0001331 19; ce(N)/(γ +ce)=1.242×10 ⁻⁵ 18				
267.0 5	0.55 14	398.39	(2)	131.70 (2-)								
274.2 3	1.20 7	398.39	(2)	124.22 1			1.21 7	I_{γ} : calculated assuming M γ =M1.				
283.4 4	4.74 13	415.15	1+	131.70 (2 ⁻)	[E1]		4.76 13	$\begin{aligned} & \text{ce}(\text{K})/(\gamma + \text{ce}) = 0.00357 \ 6; \ & \text{ce}(\text{L})/(\gamma + \text{ce}) = 0.000377 \ 6; \\ & \text{ce}(\text{M})/(\gamma + \text{ce}) = 5.97 \times 10^{-5} \ 9; \ & \text{ce}(\text{N})/(\gamma + \text{ce}) = 5.53 \times 10^{-6} \ 8 \end{aligned}$				
290.7 4	0.31 6	415.15	1+	124.22 1			0.31 6					
307.0 5	1.15 11	722.13	$1^{(+)}$	415.15 1+			1.16 11	I_{γ} : calculated assuming $M\gamma = M1$.				
309.9 1	98.6 15	309.92	1+	$0.0 1^+$			100.0 15	I_{γ} : calculated assuming M γ =E2.				
313.8 3	3.61 11	313.75	1	0.0 1+	[M1]		3.63 11	$ce(K)/(\gamma+ce)=0.00516 \ 8; \ ce(L)/(\gamma+ce)=0.000554 \ 8; ce(M)/(\gamma+ce)=8.81\times10^{-5} \ 13; \ ce(N)/(\gamma+ce)=8.23\times10^{-6} \ 12$				
^x 322.0												
328.4 2	7.60 24	328.52	1	0.0 1								
^{356.3} 5 ^x 363.1	0.56 4	901.99	1'	545.58								
379.3 [©] 5	5.2° 10	379.10	1	$0.0 1^+$								
379.3 [@] 5	0.13 [@] 2	707.97	1	328.52 1								
380.8 2	3.89 16	795.89		415.15 1+								
385.4 5	0.44 6	509.7	1	124.22 1								
392.7 2	3.75 13	392.70	(\mathbf{n})	$0.0 1^{+}$								
398.4 2	3.61 1/	398.39	(2)	$0.0 1^+$								
412.1 2	2.55 8	722.13	1+	309.92 IT								
414.5 5	414	5/6./9 115 15	1' 1+	102.72								
415.1 2 427.1 3 ×445.7	84 5 0.48 5	415.15 755.57	1^{+} 1 ⁺	328.52 1								
4451.4 5	1.02 20	1027.80	1^{+}	575.83 1+								

From ENSDF

L

$\gamma(\frac{72}{Br})$ (continued)

Eγ	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_j^{\pi}$	τ f	Eγ	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
452.3 3	4.63 17	576.79	1^{+}	124.22 1		815.1 2	1.52 11	939.27	1^{+}	124.22	1
482.5 5	0.82 20	1027.80	1^{+}	545.58		840.3 5	2.0 3	1386.08	1^{+}	545.58	
484.7 5	2.75 22	1386.08	1^{+}	901.99 1+		844.5 [@] 5	1.01 [@] 19	1154.30	1	309.92	1^{+}
485.9 5	2.82 8	795.89		309.92 1+		844.5 [@] 5	0.66 [@] 16	1173.2	$1^{(+)}$	328.52	1
489.2 5	0.24 5	707.97	1	218.79 1(-	-)	^x 858					
504.0 7	1.9 5	901.99	1^{+}	398.39 (2))	865.3 5	0.56 13	1027.80	1^{+}	162.72	
519.5 5	2.01 15	682.4	$1^{(+)}$	162.72	,	869.9 5	0.93 24	1772.05	1^{+}	901.99	1^{+}
541.1 5	0.50 15	939.27	1+	398.39 (2))	895.4 <mark>&</mark> 5		1027.80	1+	131.70	(2^{-})
545.3 3	1.08 7	707.97	1	162.72	/	901.9 5	4.7 5	901.99	1+	0.0	1+
546.7 5	0.53 8	939.27	1^{+}	392.70		908.0 7	1.16 24	1703.8	1^{+}	795.89	
559.7 4	3.01 12	722.13	$1^{(+)}$	162.72		939.2 <i>3</i>	3.92 13	939.27	1^{+}	0.0	1^{+}
575.8 4	7.3 8	575.83	1^{+}	0.0 1+		954.6 5	0.93 16	1173.2	$1^{(+)}$	218.79	$1^{(-)}$
^x 576						976.6 5	4.38 16	1772.05	1^{+}	795.89	
576.9 4	39.9 15	576.79	1^{+}	0.0 1+		991.2 5	0.25 7	1154.30	1	162.72	
579.0 <mark>&</mark> 5		1154.30	1	575.83 1+		994.3 <i>5</i>	0.69 5	1322.8	$1^{(+)}$	328.52	1
583.3 5	0.8 16	707.97	1	124.22 1		1027.7 5	0.9 7	1027.80	1^{+}	0.0	1^{+}
590.6 5	2.5 8	1386.08	1^{+}	795.89		1029.0 2	1.3 7	1604.93	1^{+}	575.83	1^{+}
592.5 4	0.4 6	901.99	1^{+}	309.92 1+	·	1039.5 <i>3</i>	1.93 14	1835.53	1^{+}	795.89	
^x 597.1						1049.9 6	3.61 25	1772.05	1^{+}	722.13	$1^{(+)}$
610.4 4	0.38 7	939.27	1^{+}	328.52 1		1058.0 5	1.93 24	1386.08	1^{+}	328.52	1
617.9 <i>3</i>	1.5 3	1772.05	1^{+}	1154.30 1		1076.0 5	0.63 12	1386.08	1+	309.92	1+
629.8 5	0.85 5	1027.80	1^{+}	398.39 (2))	^x 1080					
631.3 5	2.1 5	755.57	1^{+}	124.22 1		^x 1130.0					
633.5 5	2.84 9	795.89		162.72		^x 1154.8					
635.2 5	4.0 3	1027.80	1^{+}	392.70		1160.1 5	0.82 13	1322.8	$1^{(+)}$	162.72	
648.8 <i>5</i>	1.03 7	1027.80	1^{+}	379.10 1		^x 1161.7					
^x 665.0						1167.1 5	0.13 6	1386.08	1^{+}	218.79	$1^{(-)}$
671.7 5	0.79 21	795.89		124.22 1		1222.4 7	0.48 3	1799.5	1+	576.79	1^{+}
682.5 5	2.00 13	682.4	$1^{(+)}$	$0.0 1^+$		^x 1277.6					
699.5 <i>5</i>	1.47 6	1027.80	1+	328.52 1		^x 1312					
^x 706						^x 1319					
708.0 <i>3</i>	1.29 8	707.97	1	0.0 1+		^x 1321.2					
722.3 4	0.46 7	722.13	1(+)	0.0 1+		1373.3 5	1.53 7	1772.05	1+	398.39	(2)
739.2 3	1.12 9	1154.30	1	415.15 1+		1386.0 4	1.06 5	1386.08	1+	0.0	1+
755.5 4	7.3 5	755.57	1+	0.0 1+		1392.6 5	1.49 17	17/2.05	1+	379.10	1
x762.7						1441.9 7	0.14 1	1604.93	1 '	162.72	1
~/66	0.50.10	1150.0	1 (±)	200.20 (2)		1457.0 5	1.02 8	1835.53	1'	3/9.10	1
774.5 8	0.50 10	1173.2	1(+)	398.39 (2))	1481.3 5	0.87 3	1604.93	1+	124.22	1
777.5 5	2.36 23	901.99	1 ⁺	124.22 1		*1485.0	0.10.2	1702.0	1+	1 (0.70	
~ 193 705 7 5	0.90.7	705.00		0.0 1+		1541.0 7	0.19 3	1/03.8	1'	162.72	
/95./ 3	0.89 /	1702.89	1+	0.0 I ⁺		~1552.6 X1561.0					
801./ J	0.74 10	1/05.8	1+	901.99 I'		1201.U	0.02.14	1604 02	1+	0.0	1+
810.1 2	1.64 9	1380.08	Ι.	3/5.83 1		1005.1 0	0.92 14	1604.93	Ι.	0.0	1.

6

						⁷² Kr ε decay 2003Pi03 (continued)								
						γ ⁽⁷² Br) (continued)								
$\frac{E_{\gamma}}{1609.2 \ 6}$ ^x 1614 1636.9 5 1648.0 7 1672.7 4 1675.0 6	$\frac{{\rm I}_{\gamma}^{\ddagger}}{2.15\ 15}$ 0.6 3 2.52 10 0.24 7 0.89 6	$\frac{E_i(\text{level})}{1772.05}$ 1799.5 1772.05 1835.53 1799.5	$\frac{J_{i}^{\pi}}{1^{+}}$ $\frac{1^{+}}{1^{+}}$ $\frac{1^{+}}{1^{+}}$ $\frac{1^{+}}{1^{+}}$	$\begin{array}{c} \mathbf{E}_{f} & \mathbf{J}_{f}^{\pi} \\ \hline 162.72 & 1\\ 162.72 & 1\\ 124.22 & 1\\ 162.72 & 1\\ 124.22 & 1 \end{array}$	$I_{(\gamma+ce)}$ ‡	$\frac{E_{\gamma}}{1771.9 \ 6}$ 1799.6 6 1835.8 6 1943.5 7 1950.0 7 1988.4 10	$\frac{{\rm I}_{\gamma}^{\ddagger}}{0.32 \ 3}\\ 0.25 \ 2\\ 0.14 \ I$	E _i (level) 1772.05 1799.5 1835.53 1943.5? 1950.0? 1988.4?	$\frac{J_{i}^{\pi}}{1^{+}}$ $\frac{1^{+}}{1^{+}}$ 1 1 1	$\begin{array}{c} {\rm E}_f & {\rm J}_f^{\pi} \\ {\rm 0.0} & {\rm 1}^+ \end{array}$	$\frac{I_{(\gamma+ce)}}{0.14}$ 0.14 <i>I</i> 0.39 <i>7</i> 0.26 <i>5</i> 0.16 <i>3</i>			
1711.2 <i>3</i> <i>x</i> 1725	1.57 5	1835.53	1+	124.22 1	1.57	^x 2235 3304.8 ^{&} 10		3304.9?	1+	0.0 1+	0.98 13			

[†] From Adopted Gammas.
[‡] For absolute intensity per 100 decays, multiply by 0.157 4.
[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Multiply placed with intensity suitably divided.
 ^k Placement of transition in the level scheme is uncertain.
 ^x γ ray not placed in level scheme.

 $^{72}_{35}{
m Br}_{37}$

8

 $^{72}_{35}\mathrm{Br}_{37}$ -9

⁷²Kr ε decay 2003Pi03

137

9

 $^{72}_{35}\mathrm{Br}_{37}$ -10

 $^{72}_{35}{\rm Br}_{37}$

⁷²Kr ε decay 2003Pi03

