⁷¹Br ε decay (21.4 s) 1982Ha32

	Hist	ory		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh and Jun Chen	NDS 188,1 (2023)	17-Jan-2023	

Parent: ⁷¹Br: E=0.0; $J^{\pi}=(5/2)^{-}$; $T_{1/2}=21.4$ s 6; $Q(\varepsilon)=6644$ 6; $\%\varepsilon+\%\beta^{+}$ decay=100

⁷¹Br-J^{π},T_{1/2}: From ⁷¹Br Adopted Levels.

⁷¹Br-Q(ε): From 2021Wa16.

1982Ha32: ⁷¹Br isotope produced in ⁴⁰Ca(³⁵Cl,2p2n) E=132 MeV. Measured E γ , I γ , $\gamma\gamma$ -coin, γ (t), $\gamma\gamma$ (t), $\gamma(x \text{ ray})$ (t). Other: 1981Vo04.

The decay scheme is considered as incomplete by the evaluators in view of large energy region of ≈ 5 MeV, where no level population is known. Also 1982Ha32 state that many γ rays could not be definitely assigned to the decay of ⁷¹Br.

⁷¹Se Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	(5/2 ⁻)	4.74 min 5	$T_{1/2}$: from γ -decay in a well-type NaI detector. Other: 4.93 min 10 (1969Hu13). Same value in the Adopted Levels.
48.79 5	$(1/2^{-})$	5.6 µs 7	$T_{1/2}$: from $\gamma\gamma(t)$ and $(\gamma)(Se x ray)(t)$.
171.52 6	$(3/2^{-})$		
260.5 1	$(9/2^+)$	19.0 µs 5	$T_{1/2}$: value from this dataset: 19 μ s 3 from $\gamma\gamma$ (t).
282.44 8	$(3/2^{-})$		
647.80 18	$(5/2^+, 7/2, 9/2^-)$		
756.97 15	$(5/2^{-})$		
796.4? <i>4</i>	(5/2-)		

[†] From a least-squares fit to $E\gamma$ data.

[‡] From the Adopted Levels.

ε, β^+ radiations

 β^+ branching intensities to excited states have large uncertainties estimated by 1982Ha32 to be comparable to the branching intensities, thus not given here.

E(decay)	E(level)	$\mathrm{I}\beta^+$ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(6644 6)	0.0	60 15	0.38 10	5.2 1	60 15	av E β =2616.8 30; ε K=0.005600 18; ε L=0.0006350 2; ε M+=0.0001242 4 I β ⁺ : from 1982Ha32 based on their measured value of I(positrons)/I(261 γ)=12.1 36 and proposed level scheme.

[†] Absolute intensity per 100 decays.

 $\gamma(^{71}\text{Se})$

Iy normalization: from I(positrons)/I(261γ)=12.1 36 (1982Ha32), ignoring contribution from electron capture decay.

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α^{\ddagger}	Comments
48.78 5	17 3	48.79	(1/2 ⁻)	0.0	(5/2-)	E2	11.86	$\alpha(K)$ =9.42; $\alpha(L)$ =2.016; $\alpha(M)$ =0.316 $\alpha(K)$ exp=9.6 21 $\alpha(K)$ exp: from ratio of delayed γ rays and x-rays, with fluorescent yield and K α x ray/K x ray. Mult.: from $\alpha(K)$ exp.

Continued on next page (footnotes at end of table)

			71]	Br $arepsilon$ deca	y (21.4 s) 198	2Ha32 (continued)			
				$\gamma(^{71}\text{Se})$ (continued)						
Eγ	I_{γ}^{\dagger}	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	Comments			
122.72 5	64 5	171.52	$(3/2^{-})$	48.79	$(1/2^{-})$					
171.6 <i>1</i>	77 6	171.52	$(3/2^{-})$	0.0	$(5/2^{-})$					
233.7 1	81 6	282.44	$(3/2^{-})$	48.79	$(1/2^{-})$					
260.5 1	100 5	260.5	$(9/2^+)$	0.0	$(5/2^{-})$	[M2]				
282.4 1	31 6	282.44	$(3/2^{-})$	0.0	$(5/2^{-})$					
387.4 2	21 3	647.80	$(5/2^+, 7/2, 9/2^-)$	260.5	$(9/2^+)$					
474.6 2	26 4	756.97	$(5/2^{-})$	282.44	$(3/2^{-})$					
647.6 <i>3</i>	15 <i>3</i>	647.80	$(5/2^+, 7/2, 9/2^-)$	0.0	$(5/2^{-})$					
756.9 2	50 5	756.97	$(5/2^{-})$	0.0	$(5/2^{-})$					
796.4 [#] 4	56 6	796.4?	$(5/2^{-})$	0.0	(5/2-)					

 † For absolute intensity per 100 decays, multiply by 0.0826 25.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. [#] Placement of transition in the level scheme is uncertain.

⁷¹Br ε decay (21.4 s) 1982Ha32

⁷¹₃₄Se₃₇