⁷¹Co $β^-$ decay (80 ms) 2012Ra10,2019Ly02

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 188,1 (2023)	17-Jan-2023

Parent: ⁷¹Co: E=0.0; $J^{\pi} = (7/2^{-})$; $T_{1/2} = 80 \text{ ms } 3$; $Q(\beta^{-}) = 11.04 \times 10^{3} 47$; $\%\beta^{-}$ decay=100

⁷¹Co-J^{π},T_{1/2}: From ⁷¹Co Adopted Levels.

⁷¹Co- $\%\beta^-$ decay: $\%\beta^-n\approx 16.2$ (2020MoZS) for ⁷¹Co decay, estimated from the decay of ⁷²Co decay (2016Mo07).

2012Ra10 (also 2005Ma95,2010RaZY)): ⁷¹Co produced in fragmentation of 140 MeV/nucleon ⁸⁶Kr beam with a ⁹Be target at NSCL-MSU facility, followed by separation of fragments using A1900 fragment separator. The ions were implanted in double-sided silicon strip (DSSD) detectors for detection of (fragment) β correlated events. SeGA γ -detector array containing 16 HPGe detectors was used for E γ , I γ , $\gamma\gamma$ - and $\beta\gamma$ -coin and isotopic half-life measurements. Detailed shell-model calculations using NR78 residual interaction.

Additional information 1.

- 2019Ly02: ⁷¹Co from ⁸⁶Kr beam at 140 MeV/nucleon impinging on a ⁹Be target at the NSCL-MSU facility. ⁷¹Co, was identified using energy loss and time-of-flight information from a plastic scintillator detector in the focal plane of the A1900 and two silicon PIN detectors, followed by implantation in a 1-mm thick double-sided silicon strip detector (DSSD) which was placed in the geometric center of the Summing NaI(Tl) (SuN) detector. Measured total absorption γ spectrum (TAGS), β -decay branching ratios, B(GT), parent half life. Comparison with theoretical calculations using different models.
- 2012Ra10 mentioned an additional experiment at NSCL (reference 36 in 2012Ra10) dealing with on-line spectroscopy for ⁷¹Ni in a knockout reaction on ⁷³Cu beam and probably ⁹Be target, where 281-, 567- and 813-keV γ rays were seen, none of these in coincidence mode. This observation confirms the placement of these γ rays in ⁷¹Co.

Others:

2009St07: ⁷¹Co beam produced in ²³⁸U(p,X) reaction with E(p)=30 MeV at the LISOL facility. The γ rays were detected using three HPGe detectors. The β particles were detected with four plastic ΔE detectors. The decay scheme for ⁷¹Co to ⁷¹Ni was taken by 2009St07 from November 2007 Sanibel Island conference report and by Priv. Comm. (references 9 and 22 in 2009St07).

2005GaZR: Measured E γ , half-life. Five γ rays reported at 251, 280, 568, 736 and 772 keV. No level scheme was proposed.

- 2004Sa59: ⁷¹Co produced from fragmentation of ⁸⁶Kr beam in charge state 36⁺. The reaction products analyzed by LISE2000 spectrometer. Measured E β , E γ , $\beta\gamma$ coin, isotopic half-life. See also 2002MaZN thesis. Four γ rays were reported at 253, 281, 566 and 774 keV; and levels were proposed at 281 (or 253), 489 (or 461), 1055 (or 1027) and 1308 with J^{π} =(7/2⁺), (1/2⁻), (5/2⁻) and (5/2⁻), respectively, based on shell-model considerations and comparisons with ⁶⁹Ni level scheme.
- 2009St07 list five γ rays at 252, 281, 566, 774 and 813 with levels at 281, (7/2⁺); 499, (1/2⁻); 813, (5/2⁺); 1065, (5/2⁻); and 1273, (5/2⁻) from a Priv. Comm. (reference 22 in 2009St07). The 281, 566 and 774 γ rays were also seen by 2009St07, depicted in authors' spectral Fig. 5.

The level scheme is from 2012Ra10, based on a $\gamma\gamma$ cascade observed in coincidence and two γ rays from (5/2⁻) levels feeding the $1/2^-$ isomer in analogy with the decay scheme of ⁶⁹Co to ⁶⁹Ni proposed in 1999Mu17. Other scenarios for the placement of 566 and 774 γ rays were considered in 2012Ra10 but ruled out on the basis of unacceptable transition rates and/or lack of $\gamma\gamma$ -coincidence correlations.

The decay scheme for γ -ray data is incomplete thus no γ -normalization factor can be deduced.

⁷¹Ni Levels

E(level) [†]	$J^{\pi \#}$	T _{1/2}	Comments
0.0 280.8 2	$(9/2^+)$ $(7/2^+)$	2.56 s 3	$T_{1/2}$: from the Adopted Levels.
498.5 6	$(1/2^{-})$	2.3 s 3	$\%\beta^{-}=100$
812.8? 5	(5/2+)		E(level): from 1065.4 6 – 566.9 2. Other: 499 (2012Ra10,2009St07). T _{1/2} : isomer identified by 2009St07, T _{1/2} measured from decay curve for 454 γ . E(level): from 2012Ra10.
			A possible 532γ from this level to 281 level was not observed either due to large hindrance factor for M1 transition in competition with E2 transition or that it is obscured by a strong 534-keV γ ray from ⁷¹ Ni decay to ⁷¹ Cu.
1065.4 6	$(5/2^{-})$		E(level): from $812.8 5 + 252.6 4$.

Continued on next page (footnotes at end of table)

⁷¹Co-Q(β^{-}): From 2021Wa16.

⁷¹Co $β^-$ decay (80 ms) 2012Ra10,2019Ly02 (continued)

⁷¹Ni Levels (continued)

E(level) [†]	$J^{\pi \#}$	Comments
1272.9 7	$(5/2^{-})$	E(level): from 774.4 $3 + 498.5 6$.
1290 [‡] 15		
1320 [‡] <i>15</i>		
1350 [‡] <i>15</i>		
1390 [‡] 20		
1430 [‡] 20		
1480 [‡] 25		
1530 25		
1580 [‡] 30		
1640 30		
1700+ 35		
1770+ 35		
1840 ⁺ 40		
1920 + 45		
2010 + 45		
2100 + 50		
2200 + 50		
2300 ± 50		
$2500^{\ddagger} 50$		
$2600^{\ddagger} 50$		
$2700^{\ddagger}.50$		
$2800^{\ddagger}50$		
2900 [‡] 50		
3000 [‡] <i>50</i>		
3150 [‡] 75		
3300 [‡] 75		
3450 [‡] 75		
365×10^{12} 10		
385×10^{17} 10		
405×10^{17} 10		
425×10^{14} 10		
445×10^{14} 10		
465×10^{14} 10		
485×10^{14} 10		
505×10^{14} 10		
525×10^{14} 10		
570×10^{12} 10		
590×10^{12} 10		
630×10^{14} 10		
650×10^{12} 10		
670×10^{12} 10		

⁷¹Co $β^-$ decay (80 ms) 2012Ra10,2019Ly02 (continued)

⁷¹Ni Levels (continued)

E(level)[†]

 $\begin{array}{c} 690 \times 10^{1 \ddagger} \ 10 \\ 710 \times 10^{1 \ddagger} \ 10 \\ 750 \times 10^{1 \ddagger} \ 10 \\ 770 \times 10^{1 \ddagger} \ 10 \\ 800 \times 10^{1 \ddagger} \ 20 \end{array}$

[†] From $E\gamma$ data.

[‡] Pseudo-levels constructed using the statistical model code DICEBOX to fit the measured total absorption spectrum (TAGS). The quoted level energies represent energy bins equivalent to the energy resolution of the SuN detector (2019Ly02). The data are from Priv. Comm. in October 2019 between the XUNDL compiler Jun Chen (NSCL-MSU) and S. Lyon, the first author of 2019Ly02. This level is not included in the Adopted Levels.

[#] Assignments from 2012Ra10, based on shell-model predictions.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Comments
$(3.0 \times 10^3 5)$	8000	$\approx 1.2 \times 10^{-5}$	$I\beta = 0.000012 \pm 7.8.$
$(3.3 \times 10^3 5)$	7700	$\approx 4.8 \times 10^{-6}$	$I\beta = 0.0000048 \pm 7.8.$
$(3.5 \times 10^3 5)$	7500	$\approx 1.0 \times 10^{-5}$	$I\beta = 0.000010 \pm 7.8.$
$(3.9 \times 10^3 5)$	7100	≈4.9×10 ⁻⁶	$I\beta = 0.0000049 \pm 7.8.$
$(4.1 \times 10^3 5)$	6900	$\approx 6.7 \times 10^{-6}$	$I\beta = 0.0000067 \pm 7.8.$
$(4.3 \times 10^3 5)$	6700	$\approx 6.5 \times 10^{-5}$	$I\beta = 0.000065 \pm 7.8.$
$(4.5 \times 10^3 5)$	6500	$\approx 3.5 \times 10^{-6}$	$I\beta = 0.0000035 \pm 7.8.$
$(4.7 \times 10^3 5)$	6300	$\approx 1.6 \times 10^{-4}$	$I\beta = 0.00016 \pm 7.8.$
$(5.1 \times 10^3 5)$	5900	$\approx 1.6 \times 10^{-8}$	$I\beta = 0.00000016 \pm 7.8.$
$(5.3 \times 10^3 5)$	5700	$\approx 1.3 \times 10^{-4}$	$I\beta = 0.00013 \pm 7.8.$
$(5.5 \times 10^3 5)$	5500	$\approx 6.7 \times 10^{-5}$	$I\beta = 0.000067 \pm 7.8.$
$(5.8 \times 10^3 5)$	5250	$\approx 2.0 \times 10^{-4}$	$I\beta = 0.00020 \pm 7.8.$
$(6.0 \times 10^3 5)$	5050	$\approx 1.1 \times 10^{-4}$	$I\beta = 0.00011 \pm 7.8.$
$(6.2 \times 10^3 5)$	4850	≈0.036	$I\beta = 0.036 \pm 7.8.$
$(6.4 \times 10^3 5)$	4650	≈0.19	$I\beta = 0.19 \pm 7.8.$
$(6.6 \times 10^3 5)$	4450	≈0.75	$I\beta = 0.75 \pm 7.8.$
$(6.8 \times 10^3 5)$	4250	≈1.8	$I\beta = 1.8 \pm 7.7.$
$(7.0 \times 10^3 5)$	4050	≈3.6	$I\beta = 3.6 \pm 7.7.$
$(7.2 \times 10^3 5)$	3850	≈0.90	$I\beta = 0.90 \pm 7.6.$
$(7.4 \times 10^3 5)$	3650	$\approx 1.5 \times 10^{-6}$	$I\beta = 0.0000015 \pm 7.6.$
$(7.6 \times 10^3 5)$	3450	≈3.9	$I\beta = 3.9 \pm 7.6.$
$(7.7 \times 10^3 5)$	3300	≈3.1	$I\beta = 3.1 \pm 7.5.$
$(7.9 \times 10^3 5)$	3150	≈0.0011	$I\beta = 0.0011 \pm 7.4.$
$(8.0 \times 10^3 5)$	3000	≈3.0	$I\beta = 3.0 \pm 7.4.$
$(8.1 \times 10^3 5)$	2900	≈0.32	$I\beta = 0.32 \pm 7.3.$
$(8.2 \times 10^3 5)$	2800	≈0.23	$I\beta = 0.23 \pm 7.3.$
$(8.3 \times 10^3 5)$	2700	≈0.0021	$I\beta = 0.0021 \pm 7.0.$
$(8.4 \times 10^3 5)$	2600	≈1.0	$I\beta = 1.0 \pm 7.0.$
$(8.5 \times 10^{3} 5)$	2500	≈5.6	$I\beta = 5.6 \pm 7.0.$
$(8.6 \times 10^3 5)$	2400	≈0.0031	$I\beta = 0.0031 \pm 6.7.$
$(8.7 \times 10^{3} 5)$	2300	≈4.6	$1\beta = 4.6 \pm 6.7.$
$(8.8 \times 10^3 5)$	2200	≈2.9×10 ⁻⁴	$l\beta = 0.00029 \pm 6.5.$
$(8.9 \times 10^{3} 5)$	2100	≈1.1	$4\beta = 1.1 \pm 6.5.$

Continued on next page (footnotes at end of table)

		β	- radiations (continued)	
E(level)	$I\beta^{-\dagger\ddagger}$			Comments
2010	≈0.077	$I\beta = 0.077 \pm 6.4.$		

⁷¹Co $β^-$ decay (80 ms) 2012Ra10,2019Ly02 (continued)

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Comments
$(9.0 \times 10^3 5)$	2010	≈0.077	$I\beta = 0.077 \pm 6.4.$
$(9.1 \times 10^3 5)$	1920	≈0.0042	$I\beta = 0.0042 \pm 6.4.$
$(9.2 \times 10^3 5)$	1840	≈4.8	$I\beta = 4.8 \pm 6.4.$
$(9.3 \times 10^3 5)$	1770	≈0.0044	$I\beta = 0.0044 \pm 6.3.$
$(9.3 \times 10^3 5)$	1700	≈0.0030	$I\beta = 0.0030 \pm 6.3.$
$(9.4 \times 10^3 5)$	1640	≈0.24	$I\beta = 0.24 \pm 6.2.$
$(9.5 \times 10^3 5)$	1580	≈4.5	$I\beta = 4.5 \pm 6.1.$
$(9.5 \times 10^3 5)$	1530	$\approx 4.2 \times 10^{-6}$	$I\beta = 0.0000042 \pm 5.9.$
$(9.6 \times 10^3 5)$	1480	≈0.31	$I\beta = 0.31 \pm 5.9.$
$(9.6 \times 10^3 5)$	1430	7.6 58	
$(9.7 \times 10^3 5)$	1390	≈0.022	$I\beta = 0.022 \pm 5.4.$
$(9.7 \times 10^3 5)$	1350	≈0.0015	$I\beta = 0.0015 \pm 5.4.$
$(9.7 \times 10^3 5)$	1320	≈0.005	$I\beta = 0.0048 \pm 5.3.$
$(9.8 \times 10^3 5)$	1290	13 5	
$(9.8 \times 10^3 5)$	1272.9	4 4	I β =4.2 44 (2019Ly02). Other %I β =22 (2012Ra10).
$(1.00 \times 10^4 5)$	1065.4	33 4	Other %I β =64 (2012Ra10).
$(1.08 \times 10^4 5)$	280.8	1.7 11	Other I β =11% (2012Ra10).

[†] From a fit to measured total absorption spectrum (TAGS) data in 2019Ly02. Values were obtained as a Priv. Comm. in Oct 2019 by one of the evaluators from S. Lyon, the first author of 2019Ly02. For pseudo-levels, the quoted β feedings are for energy bins of 30-200 keV around the quoted level energies, with the bin equivalent to the energy resolution of the SuN detector (2019Ly02). For values that are listed as approximate, the uncertainties given by the authors are much larger than the listed β feedings.

[‡] Absolute intensity per 100 decays.

$\gamma(^{71}\text{Ni})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult.	Comments
252.6 [#] 4	92	1065.4	(5/2-)	812.8?	(5/2+)	[E1]	I _γ : 54 10 (2004Sa59). E _γ : placement proposed from 253 or 1308 level in 2004Sa59, which is inconsistent with placement from 1065 level in more recent study by 2012Ra10, based on observed γ-ray intensities of the 252.6γ and 812.8γ.
280.8 [‡] 2	19 4	280.8	$(7/2^+)$	0.0	$(9/2^+)$		I_{γ} : 40 30 (2004Sa59).
566.9 ^{‡@} 2	100	1065.4	(5/2 ⁻)	498.5	(1/2 ⁻)		 I_γ: 100 (2004Sa59). E_γ: placement proposed from 1027 or 1055 level in 2004Sa59, which is inconsistent with placement from 1065 level in more recent study by 2012Ra10, based on observed γ-ray intensities of the 252.6γ and 812.8γ. E_γ: from 2005GaZR only.
774.4 ^{‡@} 3	38 7	1272.9	(5/2 ⁻)	498.5	(1/2 ⁻)		I_{γ} : 85 20 (2004Sa59). E_{γ} : placement proposed from 1027 or 1055 level in 2004Sa59.
812.8 [#] 5	16 <i>3</i>	812.8?	$(5/2^+)$	0.0	$(9/2^+)$	[E2]	E_{γ} : γ not reported in 2004Sa59.

[†] From 2012Ra10, unless otherwise stated.

[‡] Not observed in $\gamma\gamma$ -coincidences.

[#] Ordering of the 252-813 γ cascade is from 2012Ra10, based on observed γ -ray intensities of the 252.6 γ and 812.8 γ .

[@] Placement proposed in 2012Ra10 in analogy with the decay scheme of ⁶⁹Co to ⁶⁹Ni as proposed in 1999Mu17.

 $^{x} \gamma$ ray not placed in level scheme.

⁷¹Co β^- decay (80 ms) 2012Ra10,2019Ly02

 $^{71}_{28}Ni_{43}$

5

6