⁷²Co β^- n decay:mixed 2016Mo07

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 188,1 (2023)	17-Jan-2023

Parent: ⁷²Co: E=0+x; $J^{\pi}=(6^{-},7^{-})$; $T_{1/2}=51.5$ ms 3; $Q(\beta^{-}n)=7040$ syst; $\%\beta^{-}n$ decay ≈ 16.0 Parent: ⁷²Co: E=0+y; $J^{\pi}=(0^{+},1^{+})$; $T_{1/2}=47.8$ ms 5; $Q(\beta^{-}n)=7040$ syst; $\%\beta^{-}n$ decay ≈ 16.0

Parent: ${}^{-}\text{Co}: E=0+y; J^{-}=(0,1^{-}); 1_{1/2}=47.8 \text{ ms } 5; Q(\beta n)=7040 \text{ syst}; \%\beta n \text{ decay} \approx 10.0$

 72 Co(0+x)-J^{π},T_{1/2}: From 2016Mo07. Half-life measured from decay curve of β -decay activity gated on 454 γ . Others: 52.8 ms 16

(2014Xu07), 55 ms 4 (2014Ra20), 62 ms 3 (2011Da08, 2003Sa40), 59 ms 2 (2005Ma59), where only one activity was reported. $^{72}Co(0+x)-Q(\beta^{-}n)$: 7040 300 (syst, 2021Wa16).

 72 Co(0+x)- $\%\beta^-$ n decay: $\%\beta^-$ n ≈ 16.2 (2020MoZS). Other: <2.7.9 for decay of 72 Co (2012Ra10). Considered by evaluators as combined for the two activities.

⁷²Co(0+y)-J^π,T_{1/2}: From 2016Mo07. Half-life measured from decay curve of β-decay activity gated on 1680γ, 1689γ, 1732γ, 2023γ, 2538γ, 2650γ, 2885γ, 3040γ and 3383γ.

⁷²Co(0+y)-Q(β⁻n): 7040 300 (syst, 2021Wa16).

 72 Co(0+y)- $\%\beta^-$ n decay: $\%\beta^-$ n ≈ 16.2 (2020MoZS). Other: <2.7.9 for decay of 72 Co (2012Ra10). Considered by evaluators as combined for the two activities.

2016Mo07: ⁷²Co isotope produced in ⁹Be(²³⁸U,F),E=345 MeV/nucleon at RIBF-RIKEN facility. Fission fragments were separated and analyzed through Δ E-B ρ -tof technique using BigRIPS separator and ZeroDegree spectrometer. The implanted residues were counted using the WAS3ABi setup equipped with DSSSDs for ion, β , conversion electrons and EURICA array of 12 seven-element HPGe detectors for γ -ray detection. Fast-timing scintillation detectors BC-418 plastic and 18 LaBr₃ were used in an attempt to determine level lifetimes of \approx 100 ps or so. Measured E γ , I γ , $\beta\gamma\gamma$ -coin, (⁷²Co implants) β correlations, half-lives of two activities of ⁷²Co, a high-spin and a low-spin.

2020MoZS: one of the evaluators (B. Singh) enquired from the first author (A. Morales) about the possibility of extracting $\%\beta^-n$ for the decay of ⁷²Co investigated by 2016Mo07. Dr. A. Morales in her e-mail communication of May 26, 2020 sent us extracted decay branches for $\%\beta^-n$ and $\%\beta^-2n$ for ^{70,71,72,73,74}Co from analysis of intensities of γ rays emitted in the decay chains of several isotopes, including granddaughters and great-granddaughters. However, some concern was expressed by A. Morales about the quality of the deduced $\%\beta^-n$ and $\%\beta^-2n$ branching ratios, thus the value of $\%\beta^-n$ is listed by the evaluators here as approximate.

- 2014Ra20 (also 2005Ma95): ⁷²Co isotope produced in fragmentation of ⁸⁶Kr beam in ⁹Be target at E=140 MeV/nucleon. Reaction products were selected according to their momentum over charge ratio using the A1900 spectrometer at the NSCL-MSU facility. Measured E γ , I γ , $\gamma\gamma$ -, and $\beta\gamma$ -coin, (fragment) γ -coin, TOF and Δ E using the NSCL beta-counting system, Si strip detector for particle detection and SeGA array of Ge detectors for γ rays.
- 2016Mo07 do not provide a decay scheme for ⁷²Co β^- n decay. Based on level scheme from ⁷¹Co decay, and γ rays identified by 2016Mo07 in ⁷²Co decay, and assigned to ⁷¹Ni from β -delayed one-neutron decay mode (Fig. 1 in 2016Mo07), evaluators have constructed a decay scheme for ⁷²Co β^- n decay.

⁷¹Ni Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡		Comments
0.0	$(9/2^+)$	2.56 s 3		
280.3 5	$(7/2^+)$			
499	$(1/2^{-})$	2.3 s 3	$\%\beta^{-}=100$	
813	$(5/2^+)$			
1066	$(5/2^{-})$			
1273	$(5/2^{-})$			

[†] From $E\gamma$ values.

[‡] From the Adopted Levels.

⁷²Co β ⁻n decay:mixed 2016Mo07 (continued)

$\gamma(^{71}\text{Ni})$

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
280.3 5	280.3	$(7/2^+)$	0.0	(9/2+)	E_{γ} : from 2014Ra20. Other: 281 (2016Mo07). I _γ =13 3 (2014Ra20), relative to 100 for 1095.1γ in ⁷² Ni from ⁷² Co β ⁻ decay.
567	1066	$(5/2^{-})$	499	$(1/2^{-})$	
774 813 <i>x</i> 915	1273 813	(5/2 ⁻) (5/2 ⁺)	499 0.0	$(1/2^{-})$ $(9/2^{+})$	

[†] From β -gated singles γ spectrum (Fig. 1 in 2016Mo07), assigned by the authors to ⁷¹Ni from the β^- -n decay of ⁷²Co. ^{*x*} γ ray not placed in level scheme.

⁷²Co β ⁻n decay:mixed 2016Mo07

Decay Scheme

	$(0^+,1^+)$ 0+y	47.8 ms 5
$\%\beta^-n\approx 16.0$	Q=7040 syst	
·	(6 [−] ,7 [−]) 0+x	51.5 ms <i>3</i>
$\%\beta^{-}n\approx16.0$	Q=7040 syst	
	⁷² ₂₇ Co ₄₅	

(5/2-)	1/2 M		1273	
(5/2-)	56>		1066	
(5/2+)		\$ ²	813	
(1/2-)		_ ~_	499	2.3 s <i>3</i>
$(7/2^+)$		- ⁶ 9	280.3	
(9/2+)			0.0	2.56 s <i>3</i>

 $^{71}_{28}{
m Ni}_{43}$