Adopted Levels

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh and Jun Chen	NDS 188,1 (2023)	17-Jan-2023	

 $Q(\beta^{-})=15310 \text{ syst}; S(n)=4240 \text{ syst}; S(p)=18270 \text{ syst}; Q(\alpha)=-17300 \text{ syst}$ 2021Wa16

 $S(2n)=7400\ 640,\ Q(\beta^{-}n)=12200\ 580\ (syst, 2021Wa16).$

 $Q(\beta^2 n) = 6440\ 540$, $Q(\beta^3 n) = 3070\ 540$ (deduced by evaluators from masses in 2021Wa16). $S(2p) = 17430\ (2019Mo01, \text{ theory})$. 2010Oh02: ⁷¹Mn nuclide identified in Be(²³⁸U,F) and Pb(²³⁸U,F) reactions with a ²³⁸U⁸⁶⁺ beam energy of 345 MeV/nucleon

produced by the cascade operation of the RIBF-RIKEN accelerator complex of the linear accelerator RILAC and four cyclotrons RRC, fRC, IRC and SRC. Identification of ⁷¹Mn nuclei was made on the basis of magnetic rigidity, time-of-flight and energy loss of the fragments using BigRIPS fragment separator.

Theoretical calculations:

2016Sh39: calculated β^- decay half-life using proton-neutron finite-amplitude method (pn-FAM) with Skyrme energy-density functionals (EDFs).

2014Mi23: calculated β^- -delayed-neutron emission probabilities using effective density model.

⁷¹Mn Levels

E(level)	Comments
0	$\%\beta^{-}=100; \ \%\beta^{-}n=?; \ \%\beta^{-}2n=?; \ \%\beta^{-}3n=?$
	Decay mode has not been experimentally detected. As β^- decay, followed by delayed-neutron emission, is the only possible decay, 100% β^- decay is assigned by inference.
	Theoretical $T_{1/2}=7.4$ ms, $\%\beta^{-}n=43$, $\%\beta^{-}2n=2$, $\%\beta^{-}3n=0$ (2019Mo01).
	Theoretical $T_{1/2}=18.5$ ms, $\%\beta^{-}n=85.5$, 87.1; $\%\beta^{-}2n=1.26$, 2.1; $\%\beta^{-}3n=0.008$, 0.046 (2021Mi17).
	Based on A/Q spectrum and Z versus A/Q plot, three counts were assigned to ⁷¹ Mn isotope. (Q=charge state). As
	stated by 2010Oh02, misidentification of ⁷¹ Mn isotope is not possible since no events were observed for hydrogen-like peaks.
	Measured σ =4 pb (2010Oh02), systematic uncertainty \approx 50%.
	E(level): it is assumed that the observed activity is associated with the ground state of ⁷¹ Mn.

 $T_{1/2}$: half-life of ⁷¹Mn decay has not been measured. It is expected to be >637 ns from time-of-flight in 2010Oh02, as communicated to one of the evaluators by T. Kubo in an e-mail reply of July 14, 2010. From a trend of decreasing half-lives with increasing neutron number in neutron-rich nuclei, half-life is expected to be <20 ms, based on

measured half-lives of 19.9 ms for ⁷⁰Mn, 22.1 ms for ⁶⁹Mn and 33.7 ms for ⁶⁸Mn.

 J^{π} : 5/2⁻ from systematics (2021Ko07); Ω_p =5/2⁻ orbital (2019Mo01, theory).

 $[\]Delta Q(\beta^-)=640, \Delta S(n)=710, \Delta S(p)=\Delta Q(\alpha)=780 \text{ (syst,}2021\text{Wa16)}.$