Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh and Jun Chen	NDS 188,1 (2023)	17-Jan-2023		

 $Q(\beta^{-})=-14040 \text{ syst}; S(n)=13300 \text{ syst}; S(p)=2.19\times10^{3} 13; Q(\alpha)=-2.17\times10^{3} 15$ 2021Wa16 $\Delta Q(\beta^{-})=420, \Delta S(n)=240 \text{ (syst},2021Wa16).$

S(2n)=30330 330 (syst), S(2p)=4470 130, Q(\varepsilon p)=8310 130, Q(\varepsilon p)=10180 130 (2021Wa16).

Mass measurement: 2011Tu02, HIRFL-CSR, Cooler Storage Ring at the Heavy Ion Research Facility in Lanzhou.

Additional information 1. 1981Ew01: ⁷¹Kr produced and identified in ⁹³Nb(p,X) at 1 GeV, chemical mass separation, measured half-life.

1995B123: fragmentation of ⁷⁸Kr beam at 73 MeV/nucleon with a carbon target. SISSI/LISE spectrometer at GANIL. Energy loss and time-of-flight techniques.

1997Oi01: ⁹³Nb(p,X) at 1 GeV, ISOLDE-CERN facility, measured γ , β , delayed protons, coincidences between different types of radiation.

2002Lo13 (also 2002B117): fragmentation of ⁷⁸Kr beam at 73 MeV/nucleon with a carbon target. SISSI/LISE spectrometer at GANIL. Energy loss and time-of-flight techniques.

2008NaZR: Ca(³²S,X) and Ca(³³S,X), recoil- β^+ decay tagging method to identify γ rays in ⁷¹Kr. The details are not available. 2014Ro14: ⁷¹Kr produced in the fragmentation of 70 MeV/nucleon ⁷⁸Kr beam with nickel target. Fragments selected with the

LISE3 separator at GANIL and identified by time-of-flight and energy loss. Measured half-life of ⁷¹Kr ground-state decay by (fragment) β , (fragment) γ correlations using four Si detectors (an energy loss ΔE detector, a degrade, DSSD and Si(Li)) for particles surrounded by four HPGe Clover detectors, three EXOGAM, and one mini-clover Ge detector for γ rays.

2018Wi08: intense production (see Fig. 1 in the paper) of beam of ⁷¹Kr nuclei in ⁹Be(⁷⁸Kr,X),E-345 MeV/nucleon at RIBF-RIKEN.

- 2019Si33: ⁷¹Kr produced at the RIBF-RIKEN facility in the ${}^{9}Be({}^{124}Xe,X)$ reaction at E=345 MeV/nucleon. Fragments were separated in the first stage of BigRIPS and then identified by measuring ΔE , tof and B ρ using BigRIPS and the ZeroDegree spectrometer, followed by implantation of products into the beta-counting system WAS3ABi, consisting of a double-sided silicon-strip detector. Measured time distribution of (implanted ions) β^+ -correlated events, and deduced half-life of ${}^{71}Kr$ decay.
- 2022Wa34: ⁷¹Kr produced in ⁹Be(⁹²Mo,X),E=140 MeV/nucleon reaction, followed by separation of ions of interest using A1900 fragment separator and a Radio Frequency Fragment Separator (RFFS) at the Coupled Cyclotron Facility of NSCL-MSU. The ions in the cocktail beam were implanted into the β -counting station (BCS), which consisted of a stack of PIN detector (PIN2) and Double-Sided Silicon-Strip Detector (DSSSD) for detection of implants, surrounded by the SeGA array of 16 HPGe detectors for γ detection. Measured E γ , I γ , (implants) β -coin, (implants)(β -delayed protons)-coin, (implants) $\gamma\gamma$ -coin, (implants) $\beta\gamma$ -coin, T_{1/2} of decay of ⁷¹Kr. Deduced absolute (per 100 decays of parent) number of $\beta\gamma$ -coin events, β events, absolute (per 100 decays of parent) intensities of γ rays, and intensities of β -delayed protons.

1964F103: ⁷⁰⁻⁷²Br or ⁷⁰⁻⁷²Kr claimed to have been produced in Ni(²⁰Ne,X) E=140 MeV reaction and a delayed proton group of 2.5 MeV with a half-life of 23 s 4. It is not possible to associate this observation with a presently known activity.

Theoretical structure calculations:

2012Bh10: calculated S(2n), β_2 , S(p), binding energy using microscopic-macroscopic model with Wigner-Kirkwood expansion. 2001Sa67: calculated Gamow-Teller strength distributions, Q(ε), T_{1/2}, deformation, using self-consistent Hartree-Fock approach. 1998Ur03: calculated levels, J^{π} , Gamow-Teller strengths using Hartree-Fock approach.

1972Di03: calculated potential energy surface, deformation energy using Strutinsky formalism.

⁷¹Kr Levels

E(level)	J^{π}	T _{1/2}	Comments
0	(5/2)-	94.9 ms 4	$%ε+%β^+=100; %εp=3.06 27$ (2022Wa34) %εp=3.06 27 (2022Wa34, measurement of β-delayed proton spectrum correlated with implants, Monte-Carlo analysis used for separation of charged particles into positron and protons). Others: %εp=2.1 7 (1997Oi01), 5.2 6 (1995B123). Due to much higher statistics and a refined analysis in 2022Wa34, value from this work is preferred over those from 1997Oi01 and 1995B123. J ^π : log ft=3.64 to (5/2) ⁻ g.s. of ⁷¹ Br; mirror partner of ⁷¹ Br, g.s. $J^{\pi}=(5/2)^{-}$ (see 2022Wa34 and 2005Fi10 for discussion). Possible $vf_{5/2}$ configuration.

Continued on next page (footnotes at end of table)

Adopted Levels (continued)

⁷¹Kr Levels (continued)

E(level) J^{π} T_{1/2}

Comments

 $T_{1/2}$: 94.9 ms 4 (2022Wa34, (implants)(decay events)-correlated decay curve, with a constant background; authors also measured $T_{1/2}$ =95.3 ms 22 from (implants) $\beta\gamma$ -correlated decay curve; the uncertainty includes statistical as well as systematic). Others: 98.8 ms 3 (2019Si33, (implanted ions)(β^+)-decay curve, with exponential fit to the decay curve, including contributions from the decays of parent, daughter and grand-daughter activities and a constant background, however no decay curve is in the paper); 92 ms 9 (2014Ro14, β^+ decay correlation spectrum); 83 ms 48 (2002Lo13); 100 ms 3 (1997Oi01); 64 ms +8–5 (1995Bl23); 97 ms 9 (1981Ew01). Weighted average of all the measured values listed above, except that from 1995Bl23, is 97.4 ms 8, but with reduced χ^2 =10.5 as compared to 2.1 at 95% confidence level; unweighted average is 94.4 ms 22.