⁷¹As ε decay (65.30 h) 1990Me01,1972Va17,1971Mu14

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 188,1 (2023)	17-Jan-2023

Parent: ⁷¹As: E=0.0; $J^{\pi}=5/2^-$; $T_{1/2}=65.30$ h 7; $Q(\varepsilon)=2013$ 4; $\%\varepsilon+\%\beta^+$ decay=100

⁷¹As-J^{π},T_{1/2}: From ⁷¹As Adopted Levels.

⁷¹As-Q(ε): From 2021Wa16.

1990Me01: measured E γ , I γ , $\gamma\gamma$, isotopic half-life with Ge(Li) detectors at Lawrence Berkeley Laboratory.

1972Va17: measured E γ , I γ , $\gamma\gamma$ with a Ge(Li) detector at the University of Notre Dame. A total of 14 levels reported. Results are in agreement with those from 1990Me01.

1971Mu14: measured E γ , I γ , $\gamma\gamma$, isotopic T_{1/2} with a Ge(Li) detector at the University of Manchester. A total of 18 levels reported. Results are in agreement with those from 1990Me01.

1993Ha08: measured $\gamma(\theta)$ for oriented nuclei at low temperature, deduced mixing ratios. Comparisons with interacting boson-fermion model calculations.

1987Br24: measured $\gamma(\theta)$ with low temperature nuclear orientation at Clarendon Laboratory in Oxford. Deduced multipolarity, mixing ratio. Sign convention for δ not specified.

1967Vi06: measured E γ , I γ . A total of 17 γ rays were reported and 15 were placed amongst 8 levels, three of them tentative. The 279, 1315 and 1495 levels were not confirmed in later studies.

Others:

2005Se14: measured $\beta(\theta)$ and $\gamma(\theta)$ using oriented nuclei at low temperature, deduced isospin mixing in the ground state of ⁷¹As. 2004Br44: theoretical calculations of β decay rates and levels using interacting boson-fermion model. Additional information 1.

Earlier references for production, decay and T_{1/2} of ⁷¹As: 1959Re24, 1957Be46, 1955Gr08, 1954Th36, 1953St31, 1952Br90, 1950Me55, 1950Ho26, 1948Mc31, 1941Sa01, 1939Sa02.

⁷¹Ge Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} &	Comments
0.0	$1/2^{-}$	11.43 d 3	$T_{1/2}$: from the Adopted Levels.
174.954 <i>4</i>	$5/2^{-}$	81 ns <i>3</i>	$T_{1/2}$: value from this dataset: ≈ 70 ns (1955Gr08).
198.371 10	$9/2^+$	20.22 ms 12	%IT=100
			$T_{1/2}$: from the Adopted Levels.
499.899 5	$3/2^{-}$		-,- •
525.116 6	$5/2^{+}$		
589.771 <i>11</i>	7/2+		
708.199 5	3/2-	>10.7 ps	
747.255 5	5/2-		
808.230 17	$1/2^{-}$		
831.299 8	3/2-		
886.94 10	$(3/2^{-})$		
1026.543 6	5/2 ^{-#}	>1.2 ps	
1038.29 10	9/2+		
1095.512 6	$3/2^{-2}$	0.62 ps 14	
1096.06 20	7/2-	1	
1139 446 8	$3/2^{-0}$	4.0 ps 14	
1192.3?	$\frac{3}{2}$	< 0.108 ps r	Additional information 2
1205.145 8	$5/2^+$	1.11 ps 28	
1212.498 6	$5/2^{-}$	>1.2 ps	
1298 737 14	3/2-@	0.42 ns 9	
1378 70 5	5/2-	0.12 ps y	E(level): doublet proposed by the evaluators based on branching ratios in different
1370.70 3	5/2		datasets
1379.0? 5	$(1/2^{-})$		unions,
1406.651 10	7/2		An 881.8y placed by 1972Va17 from this level is assigned elsewhere in 1990Me01.
1421.97 10	$9/2^{-}$	<1.2 ps	
	- / =	···· r~	

Continued on next page (footnotes at end of table)

⁷¹As ε decay (65.30 h) 1990Me01,1972Va17,1971Mu14 (continued)

⁷¹Ge Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} &	Comments
1449.8? <i>3</i>			
1506.381 14	$7/2^{-}$	0.51 ps 16	A 480.4 γ placed by 1972Va17 from this level is not seen by 1990Me01.
1558.744 14	$5/2^{+}$		
1598.535 17	3/2-	0.55 ps 15	
1629.178 12	$(3/2^+, 5/2^-)$		
1743.409 18	3/2-	0.42 ps 15	
1780.746 19	5/2-,7/2-		
1792.098 9	$(3/2^+, 5/2^-)$		A 1593.1 γ placed by 1972Va17 from this level is not seen by 1990Me01.
1801.13 7	$(5/2^+, 7/2)$		
1937.45 3	$(3/2^+, 5/2^-)$	0.69 ps 28	431.7, 798.3, 911.4 and 1191.3 γ rays placed by 1972Va17 from this level. The 911 γ is not seen by 1990Me01 while others are placed from different levels.
1965.06 7	$3/2^{-}$		

[†] From a least-squares fit to E γ data. Fit to the original γ -ray data gave an unacceptable reduced $\chi^2=6$ with 12 γ rays outside three standard deviations. The evaluators have increased the uncertainties of poor-fitted E γ values and omitted several very poorly-fitted E γ values, as indicated under comments, resulting in $\chi^2=1.9$ with these adjustments.

[‡] From the Adopted Levels. Supporting arguments from this dataset are indicated in comments.

[#] 5/2 from $\gamma(\theta)$ (1987Br24).

[@] 3/2 from $\gamma(\theta)$ (1987Br24).

& From Adopted Levels. Values from this dataset are given under comments where available.

ε, β^+ radiations

Small negative feedings of -0.165 for 747 level and -0.038 12 for 831 level are found from the in-out intensity balance. Either some of the feeding γ rays are misplaced or their intensities are underestimated.

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
(48 4)	1965.06	0.00116 25	7.18 14	0.00116 25	εK=0.824 8; εL=0.147 7; εM+=0.0289 14
(76 4)	1937.45	0.0196 6	6.42 6	0.0196 6	εK=0.8503 23; εL=0.1254 19; εM+=0.0243 4
(212 4)	1801.13	0.035 <i>3</i>	7.14 5	0.035 3	εK=0.8728 3; εL=0.10690 18; εM+=0.02025 4
(221 4)	1792.098	0.105 4	6.71 <i>3</i>	0.105 4	εK=0.8733 2; εL=0.10654 16; εM+=0.02017 4
(232 4)	1780.746	0.0292 23	7.31 4	0.0292 23	εK=0.8738 2; εL=0.10612 15; εM+=0.02008 3
(270 4)	1743.409	0.076 4	7.03 <i>3</i>	0.076 4	εK=0.8752 2; εL=0.1050 1; εM+=0.019840 23
(384 4)	1629.178	0.102 9	7.21 4	0.102 9	εK=0.8776; εL=0.10297 5; εM+=0.01940 1
(415 4)	1598.535	0.232 18	6.93 4	0.232 18	εK=0.8780; εL=0.10263 5; εM+=0.019329 9
(454 4)	1558.744	0.251 7	6.97 2	0.251 7	εK=0.8785; εL=0.10225 4; εM+=0.019248 8
(507 4)	1506.381	0.176 6	7.22 2	0.176 6	εK=0.8790; εL=0.10184 3; εM+=0.019161 6
(563 4)	1449.8?	0.033 17	8.04 23	0.033 17	εK=0.8794; εL=0.10149 3; εM+=0.019086 5
(591 [#] 4)	1421.97	0.00074 25	9.74 15	0.00074 25	εK=0.8796; εL=0.10134 2; εM+=0.019054 5
					Expected log $ft>11$ for $\Delta J=2$, $\Delta \pi=no$ transition.
(606 4)	1406.651	0.215 7	7.30 2	0.215 7	εK=0.8797; εL=0.10127 2; εM+=0.019038 5
(634 [#] 4)	1379.0?	0.0009 4	9.71 20	0.0009 4	εK=0.8798; εL=0.10114 2; εM+=0.019011 4
(634 4)	1378.70	0.21 3	7.35 7	0.21 3	εK=0.8798; εL=0.10114 2; εM+=0.019010 4
(714 4)	1298.737	0.222 11	7.43 2	0.222 11	εK=0.8802; εL=0.10083 2; εM+=0.018944 3
(801 4)	1212.498	1.09 6	6.84 <i>3</i>	1.09 6	εK=0.8805; εL=0.10057 1; εM+=0.018888 3
(808 4)	1205.145	0.730 19	7.02 2	0.730 19	εK=0.8806; εL=0.10055 1; εM+=0.018883 3
(874 4)	1139.446	1.02 3	6.94 2	1.02 3	ε K=0.8808; ε L=0.1004; ε M+=0.018849 2
(917 4)	1096.06	0.017 8	8.76 21	0.017 8	εK=0.8809; εL=0.1003; εM+=0.01883
(918 4)	1095.512	4.59 13	6.33 2	4.59 13	εK=0.8809; εL=0.1003; εM+=0.01883
(975 4)	1038.29	0.0033 17	$10.08^{1u} 23$	0.0033 17	εK=0.8781; εL=0.10265 2; εM+=0.019295 5
(987 4)	1026.543	1.55 5	6.87 2	1.55 5	ε K=0.8810; ε L=0.1002; ε M+=0.01880

Continued on next page (footnotes at end of table)

		⁷¹ As <i>e</i>	e decay (65.30	h) 1990	Me01,1972Va1	17,1971Mu14 (continued)
				ϵ, β^+ radi	ations (continu	ued)
E(decay)	E(level)	Iβ ⁺ ‡	$I\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
(1126 4)	886.94		0.0107 19	9.14 8	0.0107 19	εK=0.8812; εL=0.09993; εM+=0.01875
(1205 4)	808.230	2.5×10 ⁻⁵ 17	0.014 9	9.1 <i>3</i>	0.014 9	av Eβ=83.1 18; εK=0.8798 2; εL=0.09966 3; εM+=0.018698 5
(1305 [#] 4)	708.199	< 0.0005	< 0.05	>8.6	< 0.05	av Eβ=125.3 17; εK=0.8724 5; εL=0.09870 7; εM+=0.01851 2
(1423 [#] 4)	589.771	< 0.001	< 0.03	>8.9	< 0.03	av Eβ=175.0 17; εK=0.8478 13; εL=0.09580 15; εM+=0.01797 3
(1488 4)	525.116	0.198 8	2.85 8	6.96 2	3.05 9	av Eβ=202.2 17; εK=0.8246 17; εL=0.09312 20; εM+=0.01746 4
(1513 4)	499.899	0.145 8	1.73 8	7.19 2	1.87 9	av Eβ=212.9 17; εK=0.8134 19; εL=0.09184 22; εM+=0.01722 4
(1815 [#] 4)	198.371	< 0.04	<0.5	>9.0 ¹ <i>u</i>	<0.5	av Eβ=367.9 18; εK=0.8036 15; εL=0.09171 17; εM+=0.01721 4
1834 [†] 7	174.954	28.0 9	56.4 16	5.85 2	84.4 24	av Eβ=352.0 18; εK=0.589 4; εL=0.0663 4; εM+=0.01244 7

[†] Calculated from Eβ+=815 10 (1955Gr08), 813 10 (1954Th36) and 800 20 (1953St31).
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

$\gamma(^{71}\text{Ge})$

Iy normalization: From $\Sigma I(\gamma + ce \text{ to } g.s.) = 100$. 1990Me01 give Iy normalization=0.82 3.

1972Va17 reported 73 γ rays with 43 placed amongst 14 levels. All the levels are in agreement with those from 1990Me01, however, placements of some of the γ rays differ. Following γ rays reported by 1972Va17 have not been confirmed in 1990Me01: 480.4 (I γ =0.019), 814.0 (I γ =0.046), 911.4 (I γ =0.010), 1238.3 (I γ =0.0063), 1460.8 (I γ =0.093), 1593.1 (I γ =0.0057), 1730.4 (I γ =0.0021), 1848.0 (I γ =0.0029). Five of these are unplaced in level scheme proposed by 1972Va17. It is possible that most of these lines are contributed by background or impurities.

1971Mu14 reported 45 γ rays placed amongst 18 levels. All levels and placements are in agreement with those from 1990Me01.

 A_2 , A_4 and U_2A_2 coefficients are from 1993Ha08.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^a	δ^{a}	α^{e}	$I_{(\gamma+ce)}^{d}$	Comments
23.438 15	0.0226 14	198.371	9/2+	174.954	5/2-	M2		207.5 30		α(K)=169.5 24; α(L)=32.7 5; α(M)=5.03 7 α(N)=0.265 4 %Iγ=0.0186 12 Mult.: from α(exp)=264 53 (1971Mu14), obtained from their γ-ray data and ce data of 1955Gr08. I _γ : 0.0226 13 (1990Me01, from table I, note that in authors' level-scheme figure 1, value is listed as 0.011). The value in table I of 1990Me01 is in agreement with 0.023 5 in 1971Mu14. ce(K)(175γ)/ce(K)(23γ)≈10; K/(L+M)≈1 (1955Gr08).
64.69		589.771	7/2+	525.116	5/2+	[M1+E2]		2.0 18	≤0.005	$ce(K)/(\gamma+ce)=0.57\ 28;\ ce(L)/(\gamma+ce)=0.09\ 9;ce(M)/(\gamma+ce)=0.013\ 14ce(N)/(\gamma+ce)=6.E-4\ 6\alpha(K)=1.7\ 15;\ \alpha(L)=0.26\ 24;\ \alpha(M)=0.038\ 35\alpha(N)=0.0017\ 15$
174.954 5	100.0 20	174.954	5/2-	0.0	1/2-	E2		0.0915 <i>13</i>		$\alpha(K)=0.0808 \ II; \ \alpha(L)=0.00924 \ I3; \ \alpha(M)=0.001369 \ I9 \ \alpha(N)=7.91\times10^{-5} \ II \ \%I\gamma=82.45 \ 22 \ A_2=-0.322 \ 9, \ A_4=+0.008 \ I0, \ U_2A_2=-0.303 \ 9. \ \alpha(K)\exp=0.095 \ (1955Gr08), \ 0.07 \ (1954Th36).$
195.22 15	0.010 [#] 5	1026.543	5/2-	831.299	3/2-	[M1,E2]		0.037 24		%Iγ=0.008 4 α (K)=0.033 21; α (L)=0.0037 24; α (M)=5.E-4 4 α (N)=3.3×10 ⁻⁵ 20
247.351 5	0.237 6	747.255	5/2-	499.899	3/2-	M1+E2	-0.18 7	0.0080 5		$\alpha(K)=0.0072 5; \alpha(L)=0.00075 5; \alpha(M)=0.000113$ 7 $\alpha(N)=7.3\times10^{-6} 4$ %Iv=0.195.6

				71 As ε d	ecay (6	5.30 h) 19	990Me0	1,1972Va17,19	71Mu14 (continued)
						<u>γ(</u>	⁷¹ Ge) (c	continued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^a	δ ^a	α^{e}	Comments
264.21 15	0.010 [#] 5	1095.512	3/2-	831.299	3/2-	[M1,E2]		0.013 7	%I γ =0.008 4 α (K)=0.012 6; α (L)=0.0013 7; α (M)=1.9×10 ⁻⁴ 10 α (N)=1.2×10 ⁻⁵ 6
279.379 ^{&} 7	0.227 8	1026.543	5/2-	747.255	5/2-	(M1+E2)		0.011 6	$\alpha(K)=0.010\ 5;\ \alpha(L)=0.0011\ 5;\ \alpha(M)=1.6\times10^{-4}\ 8$ $\alpha(N)=1.0\times10^{-5}\ 5$ %I $\gamma=0.187\ 8$ $E_{\gamma}:$ very poor fit and omitted in the fitting; level-energy
287.32 4	0.026 3	1095.512	3/2-	808.230	1/2-	[M1,E2]		0.010 5	difference=279.287. % $I\gamma$ =0.021 3 α (K)=0.009 4; α (L)=1.0×10 ⁻³ 5; α (M)=1.4×10 ⁻⁴ 7 α (N)=9 E-6 4
306.217 25	0.030 4	831.299	3/2-	525.116	5/2+	(E1+M2)		0.00274 17	$%I_{\gamma}=0.025 \ 3$ $\alpha(K)=0.00244 \ 15; \ \alpha(L)=0.000251 \ 17; \ \alpha(M)=3.75\times10^{-5} \ 25$ $\alpha(N)=2.41\times10^{-6} \ 16$
308.24 ^{<i>f</i>} 4	0.014 ^{f#} 2	808.230	1/2-	499.899	3/2-	(M1+E2)		0.008 4	% $I_{\gamma}=0.0115 \ 17$ $\alpha(K)=0.0071 \ 33; \ \alpha(L)=8.E-4 \ 4; \ \alpha(M)=1.1\times10^{-4} \ 5$ $\alpha(N)=7.1\times10^{-6} \ 32$
308.24 ^{<i>f</i>} 4	0.010 ^{f#} 2	1139.446	3/2-	831.299	3/2-	(M1+E2)		0.008 4	% I γ =0.0083 17 α (K)=0.0071 33; α (L)=8.E-4 4; α (M)=1.1×10 ⁻⁴ 5 α (N)=7.1×10 ⁻⁶ 32
311.15 <i>15</i> x315.45 9	$0.005^{\#} 2$ 0.003 1	1406.651	7/2-	1095.512	3/2-				%Iγ=0.0041 <i>17</i> %Iγ=0.0025 <i>8</i>
324.92 6 326.785 15	0.021 <i>5</i> 3.70 <i>8</i>	499.899 525.116	3/2 ⁻ 5/2 ⁺	174.954 198.371	5/2 ⁻ 9/2 ⁺	E2		0.00955 <i>13</i>	$\%_{1}^{\prime}$ =0.017 4 $\alpha(K)$ =0.00849 12; $\alpha(L)$ =0.000913 13; $\alpha(M)$ =0.0001358 19 $\alpha(N)$ =8.41×10 ⁻⁶ 12 $\%_{1}\gamma$ =3.05 9 $\delta(M3/E2)$ =+0.05 6. A ₂ =-0.178 21, A ₄ =-0.014 25, U ₂ A ₂ =-0.165 20. U ₂ A ₂ =-0.155 9 (1987Br24).
331.4 2	0.02 [#] 1	831.299	3/2-	499.899	3/2-	E2(+M1)	>1.4	0.0082 9	$\alpha(K)=0.0073 \ 8; \ \alpha(L)=0.00078 \ 9; \ \alpha(M)=0.000116 \ 13$ $\alpha(N)=7.2\times10^{-6} \ 8$ %I γ =0.017 8 I $_{\gamma}$: from level-scheme Fig. 1 in 1990Me01, 0.002 in E γ , I γ authors' Table I seems a misprint in view of comparison of branching ratios with other reactions.
331.48 ^{&} 4	0.025 4	1139.446	3/2-	808.230	1/2-	[M1,E2]		0.0064 27	%I γ =0.021 3 α (K)=0.0057 24; α (L)=6.0×10 ⁻⁴ 27; α (M)=9.E-5 4

S

 $^{71}_{32}\text{Ge}_{39}$ -5

				71 As ε (lecay (65.30 h)	1990Me01,1972	Va17,1971Mu1	4 (continued)
						<u> </u>	(⁷¹ Ge) (continu	ed)	
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^a	δ^{a}	α^{e}	Comments
348.27 5	0.058 9	1095.512	3/2-	747.255	5/2-	[M1,E2]		0.0055 22	
350.163 6	0.459 11	525.116	5/2+	174.954	5/2-	E1+M2	-0.19 3	0.00216 <i>13</i>	$\begin{aligned} &\alpha(N) = 4.9 \times 10^{-6} \ 19 \\ &I_{\gamma}: \text{ from table I of } 1990 \text{Me01, listed as } 0.048 \text{ in } \\ & \text{ authors' figure 1.} \\ &\alpha(K) = 0.00193 \ 11; \ \alpha(L) = 0.000200 \ 13; \\ &\alpha(M) = 2.98 \times 10^{-5} \ 19 \\ &\alpha(N) = 1.93 \times 10^{-6} \ 12 \\ &\% I_{\gamma} = 0.378 \ 11 \end{aligned}$
373.837 12	0.104 4	1205.145	5/2+	831.299	3/2-	(E1)		1.49×10 ⁻³ 2	δ: deduced by 1993Ha08 using their γ(θ) data and those from 1987Br24. A ₂ =-0.20 26, A ₄ =-0.2 3, U ₂ A ₂ =-0.19 25. α (K)=0.001331 19; α (L)=0.0001361 19; α (M)=2.028×10 ⁻⁵ 28 α (N)=1.311×10 ⁻⁶ 18
x375.70 9 380.08 6 387.31 4	0.009 <i>3</i> 0.010 <i>2</i> 0.015 <i>2</i>	1406.651 1095.512	7/2 ⁻ 3/2 ⁻	1026.543 708.199	5/2 ⁻ 3/2 ⁻	[M1,E2]		0.0039 14	%1 γ =0.086 4 %1 γ =0.0074 25 %1 γ =0.0083 17 %1 γ =0.0124 17 α (K)=0.0035 13; α (L)=3.7×10 ⁻⁴ 14; α (M)=5.5×10 ⁻⁵
391.383 <i>18</i>	0.736 16	589.771	7/2+	198.371	9/2+	M1+E2	-0.21 +4-3	0.00257 5	α (N)=3.5×10 ⁻⁶ <i>12</i> %I γ =0.607 <i>17</i> α (K)=0.00230 <i>5</i> ; α (L)=0.000238 <i>5</i> ; α (M)=3.56×10 ⁻⁵ <i>7</i>
392.16 5	0.042 3	1139.446	3/2-	747.255	5/2-	(M1+E2)		0.0038 13	$\alpha(N)=2.33\times10^{-6} 5$ $\alpha(K)=0.0034 \ 12; \ \alpha(L)=3.6\times10^{-4} \ 13; \ \alpha(M)=5.3\times10^{-5}$ 19 $\alpha(N)=3.4\times10^{-6} \ 12$ $\alpha(L)=0.035 \ 3$
^x 410.42 8 414.39 <i>10</i> 431.281 <i>23</i>	0.010 5 0.004 1 0.0250 11	589.771 1139.446	7/2 ⁺ 3/2 ⁻	174.954 708.199	5/2 ⁻ 3/2 ⁻	[M1,E2]		0.0029 9	δ : +0.075 <i>15</i> or -4.3 + <i>11</i> - <i>17</i> (1993Ha08). A ₂ =+0.08 <i>8</i> , A ₄ =-0.11 <i>10</i> , U ₂ A ₂ =+0.08 <i>8</i> . %I γ =0.008 <i>4</i> %I γ =0.0033 <i>8</i> %I γ =0.0206 <i>10</i> α (K)=0.0025 <i>8</i> ; α (L)=2.7×10 ⁻⁴ <i>9</i> ; α (M)=4.0×10 ⁻⁵ <i>13</i> α (N)=2.6×10 ⁻⁶ <i>8</i>
445.07 17	0.002 1	1743.409	$3/2^{-}$	1298.737	3/2-				%Iy=0.0017 8

 $^{71}_{32}\text{Ge}_{39}$ -6

			7	¹ As ε decay (65	.30 h)	1990Me()1,1972Va17,19	71Mu14 (contin	ued)
						$\gamma(^{71}\text{Ge})$ (continued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^π	E_{f}	\mathbf{J}_f^{π}	Mult. ^a	δ^{a}	α^{e}	Comments
448.52 10	0.004 2	1038.29	9/2+	589.771	7/2+	M1+E2	+0.47 +5-6	0.00206 6	% $I\gamma=0.0033 \ 17$ $\alpha(K)=0.00184 \ 6; \ \alpha(L)=0.000191 \ 6;$ $\alpha(M)=2.86\times10^{-5} \ 9$ $\alpha(N)=1.86\times10^{-6} \ 6$
457.72 <i>12</i> 465.228 <i>10</i>	0.004 <i>I</i> 0.114 <i>3</i>	1205.145 1212.498	5/2+ 5/2 ⁻	747.255 747.255	5/2 ⁻ 5/2 ⁻	(M1+E2)		0.0023 7	$%I_{\gamma}$ =0.0033 8 α(K)=0.0020 6; $α(L)$ =2.1×10 ⁻⁴ 6; α(M)=3.2×10 ⁻⁵ 9 α(N)=2.1×10 ⁻⁶ 6 $%I_{\gamma}$ =0.094 3 E_{γ} : quoted uncertainty of 0.001 is considered by the evaluators as unrealistic. It is increased to 0.010.
^x 470.60 [‡] <i>16</i> 499.876 <i>10</i>	0.002 <i>1</i> 4.42 9	499.899	3/2-	0.0	1/2-	M1+E2	-2.3 1	2.20×10 ⁻³ 3	%I γ =0.0017 8 α (K)=0.001962 29; α (L)=0.0002058 31; α (M)=3.07×10 ⁻⁵ 5 α (N)=1.959×10 ⁻⁶ 29 %I γ =3.64 10 A ₂ =+0.221 18, A ₄ =-0.018 21, U ₂ A ₂ =+0.208 17. Mult.: D+Q; δ =+0.11 2 or -2.3 1 (1987Br24)
504.28 5	0.21 6	1212.498	5/2-	708.199	3/2-	(M1+E2)		0.0018 5	$\alpha(K)=0.0016 \ 4; \ \alpha(L)=1.7\times10^{-4} \ 4; \alpha(M)=2.5\times10^{-5} \ 7 \alpha(N)=1.6\times10^{-6} \ 4 \%I\gamma=0.17 \ 5$
526.642 3	1.050 23	1026.543	5/2-	499.899	3/2-	(M1+E2)	-0.16 ^C 3	1.26×10 ⁻³ 2	$\begin{aligned} \alpha(\mathbf{K}) = 0.001123 \ 17; \ \alpha(\mathbf{L}) = 0.0001156 \ 18; \\ \alpha(\mathbf{M}) = 1.727 \times 10^{-5} \ 26 \\ \alpha(\mathbf{N}) = 1.135 \times 10^{-6} \ 17 \\ \% I\gamma = 0.866 \ 25 \\ \mathbf{A}_2 = +0.69 \ 5, \ \mathbf{A}_4 = -0.04 \ 6, \ \mathbf{U}_2\mathbf{A}_2 = +0.65 \ 5. \\ \mathbf{U}_2\mathbf{A}_2 = +0.65 \ 3 \ (1987 \text{Br}24). \end{aligned}$
533.2 2 533.6 2 551.5 <i>I</i> 570.42 2 <i>I</i>	0.0230 [#] 21 0.004 [#] 2 0.005 2 0.0270 21	708.199 1629.178 1298.737 1095.512	3/2 ⁻ (3/2 ⁺ ,5/2 3/2 ⁻ 3/2 ⁻	174.954 1095.512 747.255 525.116	5/2 ⁻ 3/2 ⁻ 5/2 ⁻ 5/2 ⁺	[E1]		0.000511 7	% $I\gamma=0.0190 \ 18$ % $I\gamma=0.0033 \ 17$ % $I\gamma=0.0041 \ 17$ % $I\gamma=0.0223 \ 18$ $\alpha(K)=0.000457 \ 6; \ \alpha(L)=4.65\times10^{-5} \ 7; \ \alpha(M)=6.94\times10^{-6} \ 10$ $\alpha(N)=4.52\times10^{-7} \ 6$
572.255 15	0.321 8	747.255	5/2-	174.954	5/2-	M1+E2		0.00129 27	$\alpha(K) = 0.00116\ 24;\ \alpha(L) = 0.000120\ 26;$

 $^{71}_{32}\text{Ge}_{39}$ -7

			71	As ε decay (65	5.30 h)	1990Me)1,1972Va17,19	971Mu14 (continued)
						$\gamma(^{71}\text{Ge})$ (continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^a	α^{e}	Comments
								$\alpha(M)=1.8 \times 10^{-5} 4$ $\alpha(N)=1.16 \times 10^{-6} 23$
590.5 1	0.03 1	1298.737	3/2-	708.199	3/2-			%Iy=0.025 8
595.6 1	0.10 [#] 1	1095.512	3/2-	499.899	3/2-	[M1,E2]	0.00116 23	%Iy=0.083 8
								$\alpha(K)=0.00104\ 20;\ \alpha(L)=0.000108\ 22;\ \alpha(M)=1.61\times10^{-5}\ 32$ $\alpha(N)=1.04\times10^{-6}\ 20$
614.26 5	0.017 3	1139.446	3/2-	525.116	$5/2^{+}$	[E1]	0.000429 6	%Iγ=0.0140 25
								$\alpha(K)=0.0003845; \alpha(L)=3.91\times10^{-5}5; \alpha(M)=5.83\times10^{-6}8$ $\alpha(N)=3.80\times10^{-7}5$
615.365 10	0.642 14	1205.145	5/2+	589.771	7/2+	(M1+E2)	0.00107 20	$\alpha(K)=0.00095\ 17;\ \alpha(L)=9.9\times10^{-5}\ 19;\ \alpha(M)=1.47\times10^{-5}\ 28$ $\alpha(N)=9.6\times10^{-7}\ 17$ %I γ =0.529 15 E $_{\gamma}$: quoted uncertainty of 0.002 is considered by the evaluators as unrealistic. It is increased to 0.010. $\delta_{1}=0.23+8=9$ or $-2.6+5=7$ (1993Ha08)
622 71 4	0.0160.11	1212 498	5/2-	589 771	7/2+			$A_2 = -0.17 \ 9, \ A_4 = +0.07 \ 11, \ U_2A_2 = -0.16 \ 9.$ %Iv=0.0132 9
631 52 15	$0.24^{\#} 4$	1378 70	5/2-	747 255	5/2-			$\%$ I γ =0.20.3
$633440^{@}25$	0.058.7	808 230	$1/2^{-}$	174 954	5/2-			$\%$ I γ = 0.048.6
000.110 20	0.020 /	000.200	1/2	111.501	5/2			 E_γ: uncertainty multiplied by a factor of 3 in the fitting; level-energy difference=633.273. I_γ: 0.018 2 based on adopted branching ratios.
639.477 [@] 14	0.059 3	1139.446	3/2-	499.899	3/2-	[M1,E2]	0.00097 17	% I γ =0.049 3 α (K)=0.00086 15; α (L)=8.9×10 ⁻⁵ 16; α (M)=1.33×10 ⁻⁵ 23
								$\alpha(N)=8.7\times10^{-7}$ 14 E _y : uncertainty multiplied by a factor of 2 in the fitting;
659.428 19	0.083 4	1406.651	7/2-	747.255	5/2-			$\%$ I γ =0.068 4
674.33 ^{&} 8	0.007 1	1506.381	, 7/2 ⁻	831.299	3/2-			%Ιγ=0.0058 8
			,		,			E_{γ} : very poor fit and omitted in the fitting; level-energy difference=675.078.
680.035 9	0.118 6	1205.145	5/2+	525.116	5/2+	(M1+E2)	0.00083 13	α (K)=0.00074 <i>11</i> ; α (L)=7.6×10 ⁻⁵ <i>12</i> ; α (M)=1.14×10 ⁻⁵ <i>18</i> α (N)=7.4×10 ⁻⁷ <i>11</i> %I γ =0.097 <i>5</i>
696.575 12	0.011 2	1792.098	$(3/2^+, 5/2^-)$) 1095.512	3/2-			%Iy=0.0091 17
698.44 2	0.0240 11	1406.651	7/2-	708.199	3/2-			%Iy=0.0198 10
702.5 3	0.04 [#] 2	1449.8?		747.255	$5/2^{-}$			%Iy=0.033 17

 ∞

 $^{71}_{32}{
m Ge}_{39}$ -8

			⁷¹ As ε	decay (65.3	80 h)	1990Me01,	1972Va17,197	1Mu14 (continu	ued)
						$\gamma(^{71}\text{Ge})$ (co	ntinued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^a	δ^{a}	α^{e}	Comments
708.195 5	0.327 10	708.199	3/2-	0.0	1/2-	M1+E2		0.00075 11	$\alpha(K)=0.00067 \ 9; \ \alpha(L)=6.9\times10^{-5} \ 10; \\ \alpha(M)=1.03\times10^{-5} \ 15 \\ \alpha(N)=6.7\times10^{-7} \ 9 \\ \%I\gamma=0.270 \ 10 \\ A_2=-0.16 \ 17, \ A_4=+0.21 \ 19, \ U_2A_2=-0.15 \ 16.$
711.6 <i>3</i> 712.598 <i>5</i>	0.008 2 0.396 11	886.94 1212.498	(3/2 ⁻) 5/2 ⁻	174.954 499.899	5/2 ⁻ 3/2 ⁻	(M1+E2)		0.00074 <i>10</i>	$%1\gamma = 0.0066 \ 17$ $\alpha(K) = 0.0066 \ 9; \ \alpha(L) = 6.8 \times 10^{-5} \ 10;$ $\alpha(M) = 1.01 \times 10^{-5} \ 15$ $\alpha(N) = 6.6 \times 10^{-7} \ 9$ $%1\gamma = 0.327 \ 11$ $\delta: -0.19 \ 9 - 11 \ or \ -1.8 \ +4 - 5 \ (1993 \text{Ha08}).$ $A_2 = +0 \ 75 \ 16 \ A_4 = +0 \ 20 \ 19 \ \text{U}_2 A_2 = +0 \ 70 \ 15$
727.531 [@] 22	0.0220 11	1558.744	5/2+	831.299	3/2-				% I_{γ} =0.0181 10 E_{γ} : uncertainty multiplied by a factor of 2 in the fitting; level-energy difference=727.441.
741.63	0.0015 8 0.198 6	747.255	5/2-	0.0	1/2-	(E2)		0.000736 <i>10</i>	%1 γ =0.0012 7 %1 γ =0.163 6 α (K)=0.000658 9; α (L)=6.80×10 ⁻⁵ 10; α (M)=1.015×10 ⁻⁵ 14 α (N)=6.57×10 ⁻⁷ 9
754.4 <i>3</i> 759.11 <i>3</i> 765.89 [@] 7	0.0018 9 0.018 2 0.007 1	1780.746 1506.381 1792.098	5/2 ⁻ ,7/2 ⁻ 7/2 ⁻ (3/2 ⁺ ,5/2 ⁻)	1026.543 747.255 1026.543	5/2 ⁻ 5/2 ⁻ 5/2 ⁻				$\% I_{\gamma} = 0.0015 \ 8$ $\% I_{\gamma} = 0.0148 \ 17$ $\% I_{\gamma} = 0.0058 \ 8$ E_{γ} : uncertainty multiplied by a factor of 3 in
788.92 5 798.0 2 798.4 2 808.27 3	0.011 2 0.02 [#] 1 0.0280 [#] 21 0.036 3	1378.70 1629.178 1506.381 808.230	5/2 ⁻ (3/2 ⁺ ,5/2 ⁻) 7/2 ⁻ 1/2 ⁻	589.771 831.299 708.199 0.0	7/2 ⁺ 3/2 ⁻ 3/2 ⁻ 1/2 ⁻				the fitting; level-energy difference=765.551. %Iy=0.0091 17 %Iy=0.017 8 %Iy=0.0231 18 %Iy=0.030 3
828.0 <i>I</i>	0.004 2	1026.543	5/2-	198.371	9/2 ⁺	[M2]		1.15×10 ⁻³ 2	α (K)=0.001023 <i>14</i> ; α (L)=0.0001064 <i>15</i> ; α (M)=1.591×10 ⁻⁵ <i>22</i> α (N)=1.046×10 ⁻⁶ <i>15</i> %I γ =0.0033 <i>17</i>
831.294 10	0.105 3	831.299	3/2-	0.0	1/2-	(M1+E2)	-0.6 +4-7	0.00048 4	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000431 \ 33; \ \alpha(\mathbf{L}) = 4.4 \times 10^{-5} \ 4; \\ &\alpha(\mathbf{M}) = 6.6 \times 10^{-6} \ 5 \\ &\alpha(\mathbf{N}) = 4.33 \times 10^{-7} \ 32 \\ &\%\mathbf{I}\gamma = 0.087 \ 3 \end{aligned}$

			⁷¹ As a	e decay (6	5.30 h)	1990Me01	,1972Va17,197	1Mu14 (continu	ed)
						$\gamma(^{71}\text{Ge})$ (co	ontinued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^a	δ^a	α ^e	Comments
839.3 ^{‡g} 3	0.0014 6	1038.29	9/2+	198.371	9/2+	(M1(+E2))	+0.10 18	0.000447 9	% $I\gamma$ =0.0012 5 $\alpha(K)$ =0.000400 8; $\alpha(L)$ =4.08×10 ⁻⁵ 8; $\alpha(M)$ =6.10×10 ⁻⁶ 12 $\alpha(N)$ =4.02×10 ⁻⁷ 8
851.3 2	$0.05^{\#} 2$	1598.535	3/2 ⁻	747.255	5/2 ⁻	$(\mathbf{M}1 + \mathbf{E}2)$	10.9° 7	0.000460.25	%Iy=0.041 <i>17</i> %(K)=0.000410 <i>21</i> ; $%$ (L)=4.20 $%$ 10 ⁻⁵ <i>24</i> ;
831.05 /	0.220 21	1020.343	3/2	1/4.934	5/2	(MI+EZ)	+0.8 7	0.000409 55	$\begin{aligned} \alpha(\mathbf{K}) &= 0.000419 \ 51, \ \alpha(\mathbf{L}) &= 4.29 \times 10^{-5} \ 54, \\ \alpha(\mathbf{M}) &= 6.4 \times 10^{-6} \ 5 \\ \alpha(\mathbf{N}) &= 4.20 \times 10^{-7} \ 30 \\ \% & I\gamma = 0.181 \ 18 \\ \mathbf{A}_2 &= -0.4 \ 3, \ \mathbf{A}_4 &= +0.2 \ 3, \ \mathbf{U}_2 \mathbf{A}_2 &= -0.4 \ 3. \end{aligned}$
881.893 25 886.98 10 890.0 2	0.037 <i>3</i> 0.005 <i>1</i> 0.003 <i>1</i>	1629.178 886.94 1598.535	(3/2 ⁺ ,5/2 ⁻) (3/2 ⁻) 3/2 ⁻	747.255 0.0 708.199	5/2 ⁻ 1/2 ⁻ 3/2 ⁻				$\%$ I γ =0.031 3 $\%$ I γ =0.0041 8 $\%$ I γ =0.0025 8
906.696 [@] 11	0.0540 23	1406.651	7/2-	499.899	3/2-				$\% I_{\gamma} = 0.0445 \ 21$ E _{γ} : uncertainty multiplied by a factor of 2 in the fitting; level-energy difference=906.745.
920.553 7	0.370 [#] 13	1095.512	3/2-	174.954	5/2-	(M1+E2) ^b		0.000400 <i>32</i>	$\alpha(K)=0.000357\ 29;\ \alpha(L)=3.66\times10^{-5}\ 31;\alpha(M)=5.5\times10^{-6}\ 5\alpha(N)=3.58\times10^{-7}\ 28\%I\gamma=0.305\ 12A_2=+0.40\ 11,\ A_4=-0.20\ 12,\ U_2A_2=+0.3810.U_2A_2=+0.31\ 12\ (1987Br24).\%:\ +0.27\ 5\ or\ +22\ +390-11\ (1987Br24).$
021 1 2	0.02# 1	1096.06	7/2-	174 954	5/2-	M1		3 67×10 ⁻⁴ 6	$+0.36 \ 14 \ \text{or} >+3.7 \ (1993\text{Ha08}).$
921.1 2	0.02 1	1090.00	1/2	174.734	5/2	1411		5.07×10 0	E_{γ} : from Fig. 1b of 1990Me01; misprint in authors' Table 1.
935.175 <i>14</i> 964.479 <i>9</i>	0.034 <i>4</i> 0.083 <i>3</i>	1743.409 1139.446	3/2 ⁻ 3/2 ⁻	808.230 174.954	1/2 ⁻ 5/2 ⁻	(M1+E2)	-0.8 +9-49	0.000354 <i>30</i>	% $I\gamma=0.028 \ 3$ % $I\gamma=0.068 \ 3$ $\alpha(K)=0.000317 \ 27; \ \alpha(L)=3.23\times10^{-5} \ 29;$ $\alpha(M)=4.8\times10^{-6} \ 4$
983.67 [@] 5	0.006 2	1792.098	(3/2+,5/2-)	808.230	1/2-				$\alpha(N)=3.17\times10^{-7} 26$ %I $\gamma=0.0050 17$ E $_{\gamma}$: uncertainty multiplied by a factor of 2 in the fitting; level-energy difference=983.860.
993.9 ^g	0.00240 11	1192.3?	11/2+	198.371	9/2+	M1+E2	+1.25 21	0.000341 6	$%I\gamma = 1.98 \times 10^{-3} 10$

			⁷¹ As ε	⁷¹ As ε decay (65.30 h)			1,1972Va17,1971N	Mu14 (continued	<u>l)</u>
						$\gamma(^{71}\text{Ge})$ (c	continued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^a	δ^{a}	α^{e}	Comments
996.06 6	0.012 1	1743.409	3/2-	747.255	5/2-				$\alpha(K)=0.000305 \ 6; \ \alpha(L)=3.12\times10^{-5} \ 6; \ \alpha(M)=4.66\times10^{-6} \ 9 \ \alpha(N)=3.05\times10^{-7} \ 6 \ E_{\gamma}, I_{\gamma};$ from level-scheme figure 1 of 1990Me01, incorrectly shown to decay from 1205 level; γ not listed in authors' table I. $\% I_{\gamma}=0.0099 \ 9 \ \% I_{\gamma}=0.0427 \ 2 I_{\gamma}$
x1000.400 17	0.0330 23	1300.381	1/2	499.899	5/2				$\%1\gamma = 0.0457/21$
1009.94 5 1026.512 <i>17</i>	0.004 <i>3</i> 0.380 <i>13</i>	1026.543	5/2-	0.0	1/2-	(E2)		0.000333 5	
1030.20 8	0.013 /	1205.145	$5/2^{+}$	174.954	$5/2^{-}$				$U_2A_2 = -0.43 \ 9 \ (1987Bf24).$ %I $\gamma = 0.0107 \ 9$
$1033.542^{@}$ 17	0.238 6	1558.744	5/2 ⁺	525.116	$5/2^+$	(M1+E2)	+1.6 ^c +14-19	0.000317 24	%I ₂ =0.196 6
									$\begin{array}{l} \alpha(\textbf{K}) = 0.000283 \ 22; \ \alpha(\textbf{L}) = 2.90 \times 10^{-5} \ 23; \\ \alpha(\textbf{M}) = 4.32 \times 10^{-6} \ 35 \\ \alpha(\textbf{N}) = 2.83 \times 10^{-7} \ 21 \\ \textbf{E}_{\gamma}: \text{ uncertainty multiplied by a factor of 3 in the fitting; level-energy difference=1033.620.} \\ \delta: \ -0.26 \ \text{to} \ +3.0 \ (1993\text{Ha08}). \\ \textbf{A}_2 = -0.33 \ 25, \ \textbf{A}_4 = +0.1 \ 3, \ \textbf{U}_2\textbf{A}_2 = -0.31 \ 24. \end{array}$
1037.530 15	0.246 6	1212.498	5/2-	174.954	5/2-	(M1+E2)		0.000306 19	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000274 \ 17; \ \alpha(\mathbf{L}) = 2.79 \times 10^{-5} \ 18; \\ &\alpha(\mathbf{M}) = 4.17 \times 10^{-6} \ 27 \\ &\alpha(\mathbf{N}) = 2.74 \times 10^{-7} \ 16 \\ &\% \mathbf{I}\gamma = 0.203 \ 6 \\ &\delta: \ -0.10 \ 6 \ \text{or} \ +2.1 \ 3 \ (1993\text{Ha08}). \\ &\mathbf{A}_2 = -0.33 \ 7, \ \mathbf{A}_4 = -0.04 \ 9, \ \mathbf{U}_2\mathbf{A}_2 = -0.31 \ 7. \end{aligned}$
1039.34 <i>6</i> 1044.845 <i>19</i> <i>x</i> 1050.6 <i>2</i> <i>x</i> 1055 9 <i>2</i>	0.011 <i>I</i> 0.0230 <i>21</i> 0.0015 <i>6</i> 0.0008 5	1629.178 1792.098	$(3/2^+, 5/2^-)$ $(3/2^+, 5/2^-)$	589.771 747.255	7/2 ⁺ 5/2 ⁻				$\% I_{\gamma} = 0.0091 \ 9$ $\% I_{\gamma} = 0.0190 \ 18$ $\% I_{\gamma} = 0.0012 \ 5$ $\% I_{\gamma} = 0.0007 \ 4$
1053.9 2 1058.817 <i>16</i> 1073.4 2 1083.86 <i>3</i> ×1090.490 [‡] <i>10</i>	0.0300 <i>12</i> 0.0023 <i>5</i> 0.014 <i>1</i> 0.019 <i>2</i>	1558.744 1598.535 1792.098	5/2+ 3/2 ⁻ (3/2 ⁺ ,5/2 ⁻)	499.899 525.116 708.199	3/2 ⁻ 5/2 ⁺ 3/2 ⁻				$\% I_{\gamma} = 0.0247 \ II$ $\% I_{\gamma} = 0.0247 \ II$ $\% I_{\gamma} = 0.0019 \ 4$ $\% I_{\gamma} = 0.0115 \ 9$ $\% I_{\gamma} = 0.0157 \ I7$

From ENSDF

 $^{71}_{32}{
m Ge}_{39}$ -11

⁷¹ As ε decay (65.30 h) 1990Me01,1972Va17,1971Mu14 (continued)									
$\gamma(^{71}\text{Ge})$ (continued)									
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^a	α^{e}	Comments	
1095.490 <i>10</i>	4.98 12	1095.512	3/2-	0.0	1/2-	(M1+E2) ^b	0.000272 15	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000243 \ 13; \ \alpha(\mathbf{L}) = 2.48 \times 10^{-5} \ 14; \ \alpha(\mathbf{M}) = 3.70 \times 10^{-6} \ 21 \\ &\alpha(\mathbf{N}) = 2.43 \times 10^{-7} \ 13 \\ &\%_{I}\gamma = 4.11 \ 12 \\ &\delta: \ -3.31 \ 4 \ \text{or} \ +0.234 \ 4 \ (1987\text{Br}24); \ +0.23 \ 2 \ \text{or} \ -3.20 \ 2 \\ &(1993\text{Ha08}). \\ &A_2 = +0.077 \ 21, \ A_4 = -0.020 \ 24, \ U_2A_2 = +0.072 \ 20. \end{aligned}$	
1008 64 7	0 1/19 5	1508 535	3/2-	100 800	3/2-			$U_2A_2 = +0.048$ 5 (198/Br24). %I ₂ = -0.123 5	
1104.16 [@] 3	0.014 1	1629.178	$(3/2^+, 5/2^-)$	525.116	5/2 ⁺			%I γ =0.0115 9 E $_{\gamma}$: uncertainty multiplied by a factor of 2 in the fitting;	
x1106.93 8 1123.74 8 1129.37 5	0.006 <i>1</i> 0.0036 <i>6</i> 0.007 <i>1</i>	1298.737 1629.178	$3/2^{-}$ (3/2 ⁺ ,5/2 ⁻)	174.954 499.899	5/2 ⁻ 3/2 ⁻			% $I\gamma$ =0.0050 8 % $I\gamma$ =0.0030 5 % $I\gamma$ =0.0058 8	
1139.461 <i>19</i>	0.975 20	1139.446	3/2-	0.0	1/2-	M1+E2 ^b	0.000252 13	$\alpha(K) = 0.000223 \ 11; \ \alpha(L) = 2.28 \times 10^{-5} \ 12; \ \alpha(M) = 3.40 \times 10^{-6} \ 18$ $\alpha(N) = 2.24 \times 10^{-7} \ 11; \ \alpha(IPF) = 2.06 \times 10^{-6} \ 34$ $\% I\gamma = 0.804 \ 22$ $A_2 = -0.23 \ 7, \ A_4 = -0.04 \ 7, \ U_2A_2 = -0.22 \ 6.$ $U_2A_2 = -0.30 \ 3 \ (1987Br24).$ $\delta: \ +0.50 \ 3 \ or \ -17 \ +5 -10 \ (1987Br24); \ +0.45 \ 5 \ or \ -6.8 \ 14$ (1993Ha08).	
1191.18 9	0.006 2	1780.746	5/2-,7/2-	589.771	$7/2^{+}$			%Iγ=0.0050 <i>17</i>	
1202.26 ^{<i>fg</i>} 5	0.0018 ^f 9	1379.0?	(1/2 ⁻)	174.954	5/2-			$\%$ I γ =0.0015 8 Placement suggested by the evaluators, intensity deduced from branching ratio in (α ,n γ).	
1202.26 ^{<i>f</i>} 5	0.0117 ^f 8	1792.098	(3/2 ⁺ ,5/2 ⁻)	589.771	7/2+			%I γ =0.0097 7 I $_{\gamma}$: intensity divided by the evaluators.	
1211.35 8	0.0300 21	1801.13	$(5/2^+, 7/2)$	589.771	$7/2^{+}$			%Iγ=0.0247 18	
1212.496 23	0.339 9	1212.498	5/2-	0.0	1/2-	(E2)	0.0002386 <i>33</i>	$\alpha(\mathbf{K})=0.0002040\ 29;\ \alpha(\mathbf{L})=2.081\times10^{-5}\ 29;\ \alpha(\mathbf{M})=3.11\times10^{-6}\ 4$ $\alpha(\mathbf{N})=2.036\times10^{-7}\ 29;\ \alpha(\mathbf{IPF})=1.047\times10^{-5}\ 15$ $\%\mathbf{I}\gamma=0.280\ 9$ $\mathbf{A}_{2}=-0.21\ 18,\ \mathbf{A}_{4}=-0.14\ 21,\ \mathbf{U}_{2}\mathbf{A}_{2}=-0.20\ 17.$	
1218.16 7	0.0030 6	1743.409	3/2-	525.116	$5/2^{+}$			%Īγ=0.0025 5	
1231.692 <i>15</i>	0.084 3	1406.651	7/2-	174.954	5/2-	(M1+E2)	0.000224 11	α (K)=0.000190 8; α (L)=1.93×10 ⁻⁵ 8; α (M)=2.88×10 ⁻⁶ 13 α (N)=1.90×10 ⁻⁷ 8; α (IPF)=1.19×10 ⁻⁵ 18 %I γ =0.069 3	
1243.56 8	0.0021 4	1743.409	3/2-	499.899	3/2-			%Iy=0.0017 3	
1247.0 <i>1</i>	0.0009 3	1421.97	9/2-	174.954	5/2-	E2	0.0002313 32	α (K)=0.0001919 27; α (L)=1.957×10 ⁻⁵ 27; α (M)=2.92×10 ⁻⁶ 4 α (N)=1.915×10 ⁻⁷ 27; α (IPF)=1.668×10 ⁻⁵ 23	

L

			⁷¹ As ε decay (65.30 h)			1990Me01	,1972Va17,1971	Mu14 (continued)
						$\gamma(^{71}\text{Ge})$ (co	ontinued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^a	α^{e}	Comments
								$\%$ I γ =0.00074 25 %(M3/E2)=-0.06 6
1255 76 [@] 5	0.0050.5	1780 746	5/2- 7/2-	525 116	5/2+			$\%$ [$\gamma = 0.0041.4$
1235.70 5	0.0050 5	1700.710	5/2 ,//2	525.110	5/2			E_{γ} : uncertainty multiplied by a factor of 2 in the fitting;
								level-energy difference=1255.618.
1267.008 20	0.0280 12	1792.098	$(3/2^+, 5/2^-)$	525.116	5/2+			%Iγ=0.0231 <i>11</i>
1276.0 5	0.009 [#] 3	1801.13	$(5/2^+,7/2)$	525.116	$5/2^+$			%Iγ=0.0074 25
1280.91 /	0.0020 8	1702.008	$\frac{5}{2}$, $\frac{1}{2}$ $(\frac{3}{2} + \frac{5}{2})^{-}$	499.899	3/2			$\%1\gamma = 0.0017 / \%1\gamma = 0.0013 / \%1\gamma$
x1297.51 5	0.0010 5	1792.096	(3/2 ,3/2)	477.077	5/2			$\%1\gamma = 0.0013 \ 4$ $\%1\gamma = 0.0198 \ 17$
1298.729 15	0.232 7	1298.737	3/2-	0.0	$1/2^{-}$	(M1+E2) ^b	0.000214 10	$\alpha(K)=0.000170\ 6;\ \alpha(L)=1.73\times10^{-5}\ 7;\ \alpha(M)=2.58\times10^{-6}\ 10$
						. ,		$\alpha(N)=1.70\times10^{-7}$ 6; $\alpha(IPF)=2.43\times10^{-5}$ 35
								%Iy=0.191 7
								δ : +0.034 25 or -1.87 11 (1987Br24); +0.04 3 or -1.88 11
								(1993Ha08). $A_{2} = \pm 0.22.24$ $A_{4} = \pm 0.4.3$ $U_{2}A_{2} = \pm 0.21.23$
1307.98 <i>3</i>	0.0115 7	1506.381	7/2-	198.371	$9/2^{+}$			$R_2 = +0.2224$, $R_4 = +0.43$, $0_2R_2 = +0.2123$. %I $\gamma = 0.00956$
^x 1312.0 [‡] 2	0.0011 3				- /			%Iy=0.00091 25
^x 1321 [‡] 1	0.0006 4							$\%$ I γ =0.0005 3
1331.526 [@] 23	0.096 4	1506.381	7/2-	174.954	$5/2^{-}$			$\%$ I γ =0.079 4
								E_{γ} : uncertainty multiplied by a factor of 2 in the fitting;
					= 10+			level-energy difference=1331.413.
1347.7 5	0.0005 3	1937.45	$(3/2^+, 5/2^-)$	589.771	7/2+			$\%1\gamma=0.00041$ 25 L : from Table L of 1000 Me01 listed as 0.005 in outbors'
								I_{γ} . Hold Fable F of 1990 NeO1, listed as 0.005 In authors level-scheme Fig. 1.
1360.44 13	0.0104 5	1558.744	5/2+	198.371	9/2+			$\%$ I γ =0.0086 5
1379.0 5	0.0011 5	1379.0?	$(1/2^{-})$	0.0	$1/2^{-}$			%Iy=0.0009 4
1383.86 4	0.0042 4	1558.744	5/2 ⁺	174.954	$5/2^{-}$	D (0)		%Iγ=0.0035 3
1406.58 1	0.0026 6	1406.651	1/2	0.0	1/2	[M3]		$\%1\gamma$ =0.0021 5 L : from table L of 1990Me01 listed as 0.026 in authors'
								γ . from table 1 of 1990/feo1, fisted as 0.026 in authors level-scheme figure 1. The value of 0.026 is less likely, since
								in that case it would have been seen in other reactions where
								1406 level is populated.
								E_{γ} : the placement is treated as questionable by the evaluators
								since part of all of it could also be contributed by coincidental summing
1423.579 25	0.0340 12	1598.535	3/2-	174.954	5/2-			%Iy=0.0280 11
1454.26 15	0.0009 3	1629.178	$(3/2^+, 5/2^-)$	174.954	5/2-			%Iγ=0.00074 25
^x 1533.6 [‡] 1	0.0007 3							%Iγ=0.00058 25
1568.4 2	0.002 1	1743.409	3/2-	174.954	$5/2^{-}$			%Iγ=0.0017 8

 $^{71}_{32}\text{Ge}_{39}$ -13

 $^{71}_{32}{
m Ge}_{39}$ -13

$\gamma(^{71}\text{Ge})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^a	α ^e	Comments
1582.33 7	0.0036 3	1780.746	5/2-,7/2-	198.371	9/2+			%Iγ=0.0030 <i>3</i>
^x 1587.9 [‡] 3	0.0004 2							%Iy=0.00033 17
1598.505 25	0.0430 22	1598.535	$3/2^{-}$	0.0	$1/2^{-}$			$\%$ I γ =0.0355 19
1602.74 14	0.0031 4	1801.13	$(5/2^+, 7/2)$	198.371	9/2+			%Iy=0.0026 3
1605.749 <i>21</i>	0.0170 11	1780.746	5/2-,7/2-	174.954	$5/2^{-}$			%Iy=0.0140 <i>10</i>
1617.12 <i>3</i>	0.0247 8	1792.098	$(3/2^+, 5/2^-)$	174.954	5/2-			%Iγ=0.0204 8
1629.154 <i>15</i>	0.0300 12	1629.178	$(3/2^+, 5/2^-)$	0.0	$1/2^{-}$			%Iy=0.0247 11
$x^{1722.1}$	0.0002 1							$\% I\gamma = 1.7 \times 10^{-4} 8$
1743.40 4	0.0370 13	1743.409	3/2-	0.0	$1/2^{-}$	(M1+E2)	0.000278 20	%Iy=0.0305 <i>12</i>
								$\alpha(K)=9.55\times10^{-5}\ 21;\ \alpha(L)=9.67\times10^{-6}\ 22;\ \alpha(M)=1.443\times10^{-6}\ 33$
								$\alpha(N)=9.53\times10^{-8}\ 20;\ \alpha(IPF)=0.000172\ 18$
1762.49 6	0.0095 4	1937.45	$(3/2^+, 5/2^-)$	174.954	$5/2^{-}$			%Iy=0.0078 4
^x 1785.3 4	0.0003 2							%Iy=0.00025 17
1792.0 4	0.0005 3	1792.098	$(3/2^+, 5/2^-)$	0.0	$1/2^{-}$			%Iy=0.00041 25
^x 1800.4 8	0.0003 1							$\% I\gamma = 2.5 \times 10^{-4} 8$
1937.41 4	0.0137 4	1937.45	$(3/2^+, 5/2^-)$	0.0	$1/2^{-}$			%Iy=0.0113 4
1965.03 7	0.0014 3	1965.06	3/2-	0.0	$1/2^{-}$			%Iγ=0.00115 25

14

[†] From 1990Me01. Uncertainties in Iγ shown in 1990Me01 are statistical only and an additional 2% as specified by authors arising from uncertainty in overall shape of detector efficiency curve have been added in quadrature by evaluators.

[‡] Assignment to ⁷¹As decay is tentative.

[#] Intensity derived from coincidence gate.

[@] Poor fit; uncertainty multiplied by a factor in the fitting as noted under comments.

[&] Very Poor fit; gamma omitted in the fitting.

^a From the Adopted Gammas. Values and/or arguments from this dataset are given under comments or adopted in Adopted Gammas where noted.

^b Adopted values from $\gamma(\theta)$ by 1987Br24 and 1993Ha08 with electric/magnetic nature from level scheme or RUL.

^c Adopted values from $\gamma(\theta)$ data of oriented nuclei (1993Ha08).

^d For absolute intensity per 100 decays, multiply by 0.825 15.

^e Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^f Multiply placed with intensity suitably divided.

^g Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

⁷¹As ε decay (65.30 h) 1990Me01,1972Va17,1971Mu14

⁷¹As ε decay (65.30 h) 1990Me01,1972Va17,1971Mu14

⁷¹As ε decay (65.30 h) 1990Me01,1972Va17,1971Mu14

Decay Scheme (continued)

⁷¹₃₂Ge₃₉