⁷⁴Ge(α , α 3n γ) 2022Wa21

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 188,1 (2023)	17-Jan-2023

2022Wa21: $E(\alpha)=58.6$ and 62.6 MeV. Target=2.85 mg/cm² ⁷⁴Ge with a 10.8 mg/cm² backing. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$ (ADO), $\gamma\gamma$ (linear pol) using the AFRODITE array with eight Compton-suppressed clover detectors and two low-energy photon spectrometers (LEPS detectors) at the Separated Sector Cyclotron facility of iThemba LABS. Deduced high-spin levels, J^{π} , bands, evidence for an octupole band from B(E1)/B(E2) ratios.

Detailed numerical data for E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$ (ADO), $\gamma\gamma$ (linear polarization) were provided by the corresponding authors of 2022Wa21 on Sept 06, 2022, in response to evaluators' request.

E(level) [†]	\mathbf{J}^{π}	E(level) [†]	\mathbf{J}^{π}	E(level) [†]	Jπ	E(level) [†]	J^{π}
0.0	1/2-	1421.94 & 13	9/2-	3097.17 ^b 31	17/2+	4472.5 [°] 5	23/2-
174.9 <i>1</i>	5/2-	1476.4 ^{<i>a</i>} 4	$11/2^+$	3272.26 ^{<i>d</i>} 19	$17/2^{-}$	4914.5 [#] 8	$\frac{23}{2^+}$
198.18 [‡] <i>35</i>	9/2+	1949.30 [@] 16	$11/2^{-}$	3325.06 ^{&} <i>34</i>	$17/2^{-}$	5009.0 [‡] 5	$25/2^+$
499.88 [@] 25	3/2-	1959.1 ^b 4	$13/2^{+}$	3411.29 ^c 30	19/2-	5274.0 ^d 6	$25/2^{-}$
589.5 ^a 4	$7/2^{+}$	2298.6 [‡] 4	$17/2^{+}$	3592.7 [‡] 4	$21/2^+$	5727.0 [°] 6	$27/2^{-}$
747.09 ^{&} 23	5/2-	2313.6 [#] 4	$15/2^+$	3599.2 [#] 5	$19/2^{+}$	6639.3 [‡] 8	$29/2^+$
1037.3 ^b 4	9/2+	2348.85 ^{&} 16	$13/2^{-}$	3757.2 [@] 10	$(19/2^{-})$	7113.8 ^c 9	31/2-
1096.10 [@] 13	7/2-	2698.4 ^{<i>a</i>} 7	$15/2^+$	4013.3? ^a 10	$(19/2^+)$		
1172.28 [‡] <i>34</i>	$13/2^{+}$	2836.94 [°] 32	$15/2^{-}$	4098.49 ^d 30	$21/2^{-}$		
1192.00 [#] 35	$11/2^{+}$	2890.23 [@] 29	$15/2^{-}$	4363.0? ^{&} 10	$(21/2^{-})$		

⁷¹Ge Levels

[†] From least-squares fit to $E\gamma$ data.

[‡] Band(A): Band based on 198, $9/2^+, \alpha = +1/2$.

[#] Band(a): Band based on $11/2^+, \alpha = -1/2$.

^(a) Band(B): Band based on $3/2^-, \alpha = -1/2$.

[&] Band(b): Band based on $5/2^-, \alpha = +1/2$.

^{*a*} Band(C): Band based on $7/2^+, \alpha = -1/2$.

^b Band(c): Band based on 1038, $9/2^+$, $\alpha = +1/2$.

^{*c*} Band(D): Octupole band based on $15/2^{-}, \alpha = -1/2$.

^d Band(d): Octupole band based on $17/2^{-}, \alpha = +1/2$.

$\gamma(^{71}\text{Ge})$

The $\gamma\gamma(\theta)$ (ADO) ratios are for I $\gamma(135^{\circ})/I\gamma(90^{\circ})$, with typical ratios of ≈ 1.2 for stretched quadrupole and ≈ 0.8 for stretched dipole transitions.

E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	Comments
139.1 6	1.0 2	3411.29	19/2-	3272.26 17/2-	(D)	R _{ADO} =0.89 28.
174.9 <i>1</i>	75 11	174.9	$5/2^{-}$	$0.0 1/2^{-}$	(Q)	R _{ADO} =1.13 23.
247.3 6	4.1 7	747.09	$5/2^{-}$	499.88 3/2-	(D)	R _{ADO} =0.93 15.
314.1 <i>1</i>	16.7 26	3411.29	$19/2^{-}$	3097.17 17/2+	E1	R _{ADO} =0.78 12; POL=+0.21 8.
326.1 6	2.0 3	1421.94	9/2-	1096.10 7/2-	D	R _{ADO} =0.81 16.
349.0 6	1.2 2	1096.10	$7/2^{-}$	747.09 5/2-	D	R _{ADO} =0.82 15.
373.9 6	3.9 6	4472.5	$23/2^{-}$	4098.49 21/2-	D	R _{ADO} =0.83 12.
391.3 <i>1</i>	15.6 25	589.5	$7/2^{+}$	198.18 9/2+	M1	R _{ADO} =0.95 15; POL=-0.33 8.
399.4 6	1.5 3	2348.85	$13/2^{-}$	1949.30 11/2-	D	R _{ADO} =0.53 8.

Continued on next page (footnotes at end of table)

⁷⁴Ge($\alpha, \alpha 3n\gamma$) 2022Wa21 (continued)

$\gamma(^{71}\text{Ge})$ (continued)

Eγ [†]	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$E_f = J_f^{\pi}$	Mult. [‡]	Comments
435.3 6	1.3 2	3272.26	$17/2^{-}$	2836.94 15/2-	D	$R_{ADO} = 0.72 \ 11.$
447.9 3	5.4 8	1037.3	$9/2^{+}$	589.5 7/2+	M1+E2	$R_{ADO} = 1.04$ 14: POL = -0.35 14.
453.0 6	1.5 3	5727.0	27/2-	5274.0 25/2-	D	$R_{ADO} = 0.52$ 7.
482.6 6	4.3 6	1959.1	$13/2^{+}$	1476.4 11/2+	D	$R_{ADO} = 0.90 11.$
499.9.3	7.6 10	499.88	$3/2^{-}$	$0.0 1/2^{-1}$	_	$R_{ADO} = 1.15 \ I.3.$
521.1 6	3.1.6	3411.29	$19/2^{-}$	2890.23 15/2-	(0)	$R_{ADO} = 1.65 / 8.$
527.2 6	1.7.3	1949.30	$11/2^{-}$	1421.94 9/2-	D	$R_{ADO} = 0.58.5$
541.1 6	1.2.2	2890.23	$15/2^{-}$	2348.85 13/2-	D	$R_{ADO} = 0.56 \ 6.$
572.1 6	3.5 6	747.09	5/2-	174.9 5/2-	D	$R_{ADO}=1.09 \ 10$; $\Delta J=0$ transition.
574.4 3	9.4 13	3411.29	$19/2^{-}$	2836.94 15/2-	E2	$R_{ADO} = 1.50 \ 13$; POL=+0.41 9.
596.2 6	4.1 7	1096.10	$7/2^{-}$	499.88 3/2-	Q	$R_{ADO} = 1.40 \ 12.$
674.9 <i>3</i>	8.1 10	1421.94	9/2-	747.09 5/2-	Q	$R_{ADO} = 1.25 \ 9.$
687.2 <i>3</i>	5.6 4	4098.49	$21/2^{-}$	3411.29 19/2-	M1	$R_{ADO} = 0.81 6$; POL=-0.33 11.
747.3 6	2.1 4	747.09	$5/2^{-}$	$0.0 1/2^{-}$	Q	$R_{ADO} = 1.25 \ 8.$
767.1 <i>3</i>	5.8 10	1959.1	$13/2^{+}$	1192.00 11/2+	D+Q	R _{ADO} =1.36 9.
783.4 <i>3</i>	13.2 15	3097.17	$17/2^{+}$	2313.6 15/2+	M1	R _{ADO} =0.85 5; POL=-0.41 9.
786.96	4.1 6	1959.1	$13/2^{+}$	1172.28 13/2+	D+Q	$R_{ADO}=0.73$ 6; $\Delta J=0$ transition.
798.8 6	1.5 3	3097.17	$17/2^{+}$	2298.6 17/2+	D	$R_{ADO}=1.07 \ 10; \ \Delta J=0 \ transition.$
826.2 <i>3</i>	9.0 10	4098.49	$21/2^{-}$	3272.26 17/2-	E2	R _{ADO} =1.43 12; POL=+0.52 12.
839.0 <i>3</i>	10.5 20	1037.3	9/2+	198.18 9/2+	D	$R_{ADO}=1.22$ 7; $\Delta J=0$ transition.
853.2 1	17.5 25	1949.30	$11/2^{-}$	1096.10 7/2-	E2	R _{ADO} =1.29 6; POL=+0.49 12.
867.0		3757.2	$(19/2^{-})$	2890.23 15/2-		
877.8 6	3.0 6	2836.94	$15/2^{-}$	1959.1 $13/2^+$	D	R _{ADO} =0.68 17.
887.0 <i>3</i>	8.4 15	1476.4	$11/2^{+}$	589.5 7/2+	E2	$R_{ADO} = 1.20$ 7; POL=+0.23 14.
887.6 6	2.2.4	2836.94	$15/2^{-}$	1949.30 11/2-	Q	$R_{ADO} = 1.43 \ 9.$
921.2 <i>I</i>	19.7 26	1096.10	7/2-	174.9 5/2-	MI	$R_{ADO} = 0.673$; POL = -0.329 .
921.8 6	1.5 3	1959.1	13/2*	1037.3 9/2*	Q	$R_{ADO} = 1.2770$
923.4 1	21.8 26	3272.26	$17/2^{-1}$	2348.85 13/2	E2	$R_{ADO} = 1.28$ 9; POL = +0.43 9.
926.9 <i>I</i>	39.8 52	2348.85	13/2	1421.94 9/2	E2	$R_{ADO} = 1.279$; POL=+0.3313.
941.0 3	9.6 11	2890.23	15/2	1949.30 11/2	E2	$R_{ADO} = 1.18 6; \text{ POL} = +0.38 12.$
9/4.1 1	100.0	11/2.28	13/2	$198.18 \ 9/2^{-1}$	EZ E2	$R_{ADO} = 1.31 /; POL = +0.33 I0.$
9/0.2 3	0.4 9	3323.00	$\frac{1}{2}$	2348.83 15/2 109.19 $0/2^+$	E_{1} M1 + E2	$R_{ADO} = 1.12 \ I2; \ POL = +0.44 \ I8.$
995.0 I	55.2 50	1192.00	11/2	190.10 9/2	MIT+E2	$K_{ADO} = 1.347$, FOL = -0.2175.
1037.9"	151	4363.0?	$(21/2^{-})$	3325.06 17/2	0	D 110.14
1061.3.6	1.5 4	4472.5	23/2	3411.29 19/2	Q	$R_{ADO} = 1.19 14.$
1113.10	3.0 5	3411.29	19/2	2298.6 17/2	D	$R_{ADO} = 0.5770$
1121.0 1	26.4 32	2313.6	15/2*	$1192.00 \ 11/2^{+}$	E2 E2	$R_{ADO} = 1.16 0; \text{ POL} = +0.42 10.$
1120.5 1	43.102	2298.0	$\frac{17}{2^+}$	$11/2.20 15/2^{+}$ 1050 1 $12/2^{+}$	E2	$R_{ADO} = 1.22$ 0; POL = +0.32 9.
1130.1 3	13.2 14	2313.6	$\frac{17}{2}$	1939.1 13/2 $1172.28 13/2^+$		$R_{ADO} = 1.23$ 9, FOL = +0.33 22.
117566	2.4 4	2313.0 5274.0	$\frac{15/2}{25/2^{-}}$	11/2.28 15/2 $1008 \ 10 21/2^{-1}$	DTQ	$R_{ADO} = 1.147$.
1222.0.6	$1.5 \ 5$ $2 \ 4 \ 4$	2698.4	$\frac{25/2}{15/2^+}$	1476.4 $11/2^+$	() ()	$R_{ADO} = 1.50 \ 11.$ $R_{ADO} = 1.52 \ 12$
1222.0 0	51760	1421 94	$9/2^{-}$	$174.9 5/2^{-1}$	F2	$R_{ADO} = 1.32 \ 12.$ $R_{ADO} = 1.30 \ 8. \ POI = \pm 0.42 \ 13$
1254.4.6	285	5727.0	27/2	$44725 23/2^{-1}$	0	$R_{ADO} = 1.300, 10E = 10.4215.$
1278 1 3	8915	1476.4	$\frac{27}{2}^{+}$	198 18 9/2+	D	$R_{ADO} = 1.01 / l$
128563	8 2 10	3599.2	$19/2^+$	$2313.6 15/2^+$	0	$R_{ADO} = 1.01 \ H_{C}$
1205.0 5	22.7.15	3592.7	$\frac{17/2}{21/2^+}$	2298.6 17/2+	E2	$R_{ADO} = 1.2000$: $R_{ADO} = 1.31.7$: POL = +0.32.14
1214 0#	,/ 15	4012.22	$(10/2^{+})$	2608 / 15/2+		ADU 1017,102 TODETT
1314.9 1315 2 K	103	4013.37	(19/2)	2090.4 13/2	0	$R_{\rm res} = 1.21.0$
1315.20	1.9.5	7112 Q	25/2 31/2 ⁻	5777 0 27/2	Q O	$R_{ADO} = 1.21$ 7. $R_{ADO} = 1.16.0$
1/16 2 2	1.3 3	5000.0	$\frac{31/2}{25/2^+}$	35027 21/2	Q O	$R_{ADU} = 1.10$ 7. $R_{ADU} = 1.10$ 7.
1630 3 6	137	6639.3	$\frac{23}{29}$	5009.0 25/2+	Č Č	$R_{ADO} = 1.49 \ 17$
166473	12.7.17	2836.94	$\frac{2}{15/2^{-}}$	1172.28 13/2+	ч E1	$R_{ADO} = 0.797$ POL = +0.34 16
1760 9 6	2.14	1959 1	$13/2^+$	198.18 9/2+	0	$R_{ADO} = 1.18 / 3$
1924.5 6	0.4 l	3097.17	$17/2^+$	1172.28 13/2+	×	

Continued on next page (footnotes at end of table)

⁷⁴Ge(α , α 3n γ) 2022Wa21 (continued)

 $\gamma(^{71}\text{Ge})$ (continued)

- † Uncertainties are stated as 0.1-0.6 keV by authors in their Sept 06, 2022 communication. Evaluators assign 0.1 keV for E γ values with $I\gamma \ge 15$, 0.3 keV for $I\gamma = 5-15$, and 0.6 keV for $I\gamma \le 5$.
- [‡] Assigned by evaluators from R_{ADO} and linear polarization in 2022Wa21. Mult=Q is most likely E2. [#] Placement of transition in the level scheme is uncertain.

 $^{71}_{32}\text{Ge}_{39}\text{-}4$

4

⁷¹₃₂Ge₃₉

⁷¹₃₂Ge₃₉

⁷¹₃₂Ge₃₉