⁷¹Ge ε decay (11.43 d)

History

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh and Jun Chen NDS 188,1 (2023) 17-Jan-2023

Parent: 71 Ge: E=0.0; $J^{\pi}=1/2^-$; $T_{1/2}=11.43$ d 3; $Q(\varepsilon)=232.47$ 9; % ε decay=100

 71 Ge-J^{π},T_{1/2}: From 71 Ge Adopted Levels.

⁷¹Ge-Q(ε): from 2021Wa16.

1991Ke05,1991Lj02: looked for a possible violation of the Pauli Exclusion Principle (PEP) in nuclear decays by trying to detect γ rays between 8 and 35 MeV with a 3.2 Curie ⁷¹Ge source and a well-type NaI(Tl) detector. If PEP is violated, it is expected that the excited states of ⁷¹Ga would be populated which would then decay by the emission of a γ ray or a nucleon. This probability was estimated in this work to be <3.0×10⁻¹² at a 95.5% confidence limit.

1991ZI01,1991Lj02: a search for neutrinos of mass 10-40 keV was made by analyzing the internal bremsstrahlung spectrum of ⁷¹Ge ε decay. The authors claim to have discovered evidence for a neutrino of mass=17.2 keV +13-11 (95% confidence limit) which is emitted in 1.6% 8 (95% confidence limit) of the decays. In later works by 1993Di03 and 1995Le19, from the measurement of inner bremsstrahlung spectrum, no evidence was found for 17-keV neutrinos emitted by the decay of ⁷¹Ge.

⁷¹Ga Levels

 $\frac{\text{E(level)}}{0.0} \quad \frac{\text{J}^{\pi}}{\text{3/2}^{-}} \quad \frac{\text{Comments}}{\text{J}^{\pi}: \text{ From the Adopted Levels.}}$

 ε K=0.8759; ε L=0.1049; ε M+=0.01920

ε radiations

 $\begin{array}{c|cccc}
\underline{\text{E(decay)}} & \underline{\text{E(level)}} & \underline{\text{I}}\varepsilon^{\dagger} & \underline{\text{Log } ft} \\
232.47 9 & 0.0 & 100 & 4.349 I
\end{array}$

Comments

E(decay): 233.0 5, weighted average of measured values from 1954La38, 1955Bi96, and 1984HaZA, internal bremsstrahlung measurements.

IE: $\varepsilon L/\varepsilon K$ =0.1180 8 (weighted average of values from 1971Ge02 and 1962Ma26). $\varepsilon M/\varepsilon L$ =0.162 3 (1971Ge02).

[†] Absolute intensity per 100 decays.