⁷¹Zn β^- decay (4.140 h) 2017Kr01,1970Zo01,1970Ta07

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 188,1 (2023)	17-Jan-2023

Parent: ⁷¹Zn: E=155.62 6; $J^{\pi}=9/2^+$; $T_{1/2}=4.140$ h 15; $Q(\beta^-)=2810.3$ 28; $\%\beta^-$ decay=100

⁷¹Zn-E,J^{π},T_{1/2}: From Adopted Levels of ⁷¹Zn.

⁷¹Zn-Q(β^{-}): From 2021Wa16.

2017Kr01: ^{71m}Zn source produced in ⁷⁰Zn(n, γ),E=thermal neutrons from TRIGA reactor at Oregon State. Measured E γ , I γ , half-life of ^{71m}Zn decay. Counting was done at different distances to account for sum lines from cascading transitions. Deduced levels, beta feedings and log *ft* values. Comparison with previous experimental and evaluated data.

1970Zo01: ⁷¹Zn source was produced by ⁷⁰Zn(n, γ) with neutrons from the MIT reactor on an enriched ⁷⁰Zn target. Measured E γ ,

I γ , $\gamma\gamma$ -coin with NaI and Ge(Li) detectors. Deduced levels, J, π , β -decay branching ratios, log *ft*. Comparisons with available data and theoretical calculations.

1970Ta07: ⁷¹Zn source was produced by ⁷⁰Zn(n, γ) with thermal neutrons from McMaster University. Measured E γ , I γ , $\gamma\gamma$ -coin with NaI(Tl) and Ge(Li) detectors. Deduced levels.

1969Co20: measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma$ (t). Total of 17 γ rays reported.

1967Li01: measured E γ , I γ , $\gamma\gamma$ -coin, $\beta\gamma(t)$, $\gamma\gamma(t)$. Total of 14 γ rays reported.

 $\gamma\gamma(\theta)$ and $\gamma\gamma(t)$ measurements:

1978Kr06: measured $\gamma\gamma(\theta)$ for 15 $\gamma\gamma$ -cascades using combinations of two Ge(Li) detectors, a NaI(Tl) detector, and a small Ge(Li) detector for low-energy γ rays.

1976Sa39: measured $\gamma\gamma(\theta)$ for 11 $\gamma\gamma$ -cascades using Ge(Li) and NaI(Tl) detectors.

1975BeYD: measured $\gamma\gamma(\theta)$ for four $\gamma\gamma$ -cascades, and also $\gamma\gamma(\theta,H)$ using Ge(Li) and NaI(Tl) detectors.

1969Kh10: measured level lifetimes by $\gamma\gamma(t)$ and $\beta\gamma(t)$.

Other measurements:

Eγ, Iγ, γγ-coin: 1969SiZT, 1964Ta08, 1964So01, 1962Gh01, 1955Le03.

β: 1964So01, 1961Th04.

 $\beta\gamma$ -coin: 1964So01, 1955Le03.

 $\gamma\gamma(\theta)$: 1962Gh01.

1962Ma24: half-life of ^{71m}Zn decay and production yield.

The decay scheme given here is from 2017Kr01, 1970Zo01 and 1970Ta07, enhanced based on earlier decay schemes of 1969Co20 and 1967Li01.

⁷¹Ga Levels

Note that a 1702-keV, $1/2^+$ level proposed by 1970Zo01 is omitted here due to disagreement of energy and branching ratio of 1190.6-keV γ with data from a 1700-keV, $1/2^+$ level populated in $(n,n'\gamma)$, as pointed out by Prof. K. Krane (University of Oregon) on April 29, 2016.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	$3/2^{-}$	stable	
389.978 7	$1/2^{-}$	0.40 ps +28-12	
487.389 6	$5/2^{-}$	62 ps 38	$T_{1/2}$: values from this dataset: <0.1 ns (1967Li01), <0.5 ns (1969Co20).
511.558 6	3/2-	1.5 ps 7	$T_{1/2}$: values from this dataset: <0.1 ns (1967Li01), <0.5 ns (1969Co20). μ =0.95 5 (1975BeYD), but no details are provided.
910.162 11	$3/2^{-}$	0.46 ps 22	
964.689 <i>6</i>	$5/2^{-}$	1.3 ps 2	
1107.490 7	$7/2^{-}$	0.48 ps +14-10	$T_{1/2}$: values from this dataset: <0.1 ns (1967Li01), <0.5 ns (1969Co20).
1395.267 13	$7/2^{-}$	0.77 ps 6	
1476.006 7	$5/2^{-}$	>0.6 ps	
1493.856 6	9/2+	154 ps 15	$T_{1/2}$: from the Adopted Levels. μ =2.1 3 (1975BeYD), but no details are provided.
1498.325 <i>13</i>	$9/2^{-}$		•
1719.568 12	5/2-	0.12 ps +5-2	

Continued on next page (footnotes at end of table)

⁷¹Zn $β^-$ decay (4.140 h) 2017Kr01,1970Zo01,1970Ta07 (continued)

⁷¹Ga Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\ddagger}$	Comments
2082.451 17	$(13/2^+)$		Level from 2017Kr01.
2247.264 7	$7/2^{+}$	0.021 ps +6-5	
2450.649 9	$7/2^{+}$	-	
2488.239 12	$(7/2)^+$		
2600.873 23	$(9/2)^+$		
2720.017 13	$7/2^{+}$		
2804.911 12	$(7/2)^+$		
2815.784 12	7/2+	0.19 ps +13-6	

[†] From a least-squares fit to E γ data, excluding the energies of four γ rays as indicated, each of which has double placements. Reduced χ^2 =2.3 is somewhat larger than critical χ^2 =1.6, with only the 988.640 γ and 1485.8 γ deviating by about 3 σ .

[‡] From the Adopted Levels. Values of $T_{1/2}$ from decay studies mainly from $\beta\gamma(t)$ and/or $\gamma\gamma(t)$ (1967Li01) in this dataset are given under comments or are the adopted values where indicated.

 β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†‡}	Log <i>ft</i>	Comments
$(150.1\ 28)$	2815.784	0.320.5	4.96.3	av E β =41.12 84
(161.0 28)	2804.911	0.372 5	4.99 3	av E β =44.38 85
(245.9 28)	2720.017	0.156 4	5.96 2	av E β =70.99 91
(365.1 28)	2600.873	0.97 8	5.74 4	av $E\beta = 111.23~99$
				$I\beta^{-}$: 2017Kr01 give 0.6 2.
(477.7 28)	2488.239	0.686 10	6.29 1	av E β =151.8 11
(515.3 28)	2450.649	0.780 8	6.35 1	av E β =165.8 11
(718.7 28)	2247.264	5.84 6	5.98 <i>1</i>	av E β =244.8 12
(1246.4 28)	1719.568	0.026 4	9.97 ¹ <i>u</i> 7	av Eβ=489.3 12
(1467.6 28)	1498.325	0.279 9	8.49 2	av E β =565.9 13
(1472.1 28)	1493.856	85.2 12	6.009 6	av E β =567.9 13
				E(decay): measured endpoint=1460 40, average of values from 1964So01 and 1961Th04.
(1489.9 [#] 28)	1476.006	< 0.2	>9.5 ¹ <i>u</i>	av E β =595.6 13
				$I\beta^{-}$: other: <0.11 (2017Kr01).
(1570.7 28)	1395.267	0.096 5	9.07 <i>3</i>	av E β =612.3 13
(1858.4 [#] 28)	1107.490	< 0.2	>9.1	av E β =743.8 13
				$I\beta^{-}$: other: <0.6 (2017Kr01).
(2001.2 28)	964.689	0.7 4	$9.7^{1u} 3$	av E β =825.2 13
(2478.5 28)	487.389	4.6 9	9.46 ¹ <i>u</i> 8	av $E\beta = 1045.1 \ I3$

[†] Deduced by evaluators from γ -transition intensity balances. Values are nearly the same in 2017Kr01, except in a few cases, small differences are commented. Note: γ -transition intensity balances give apparent β feedings of 0.14 6 for the 390, $1/2^-$ level; 0.9 6 for the 511 level; and 0.040 5 for the 910 level, whereas none is expected from $9/2^+$ parent to $1/2^-$ or $3/2^-$ daughter states. 2017Kr01 discussed possible scenarios for these imbalances, most likely being the unobserved γ feeding from higher levels. Note also that a total γ -intensity of ≈ 0.12 units is still unassigned.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

$\gamma(^{71}\text{Ga})$

Iγ normalization: Deduced from summed I(γ+ce) to g.s.=100%. %IT≤0.05 (1970Zo01), from an upper limit on Iγ(158γ).
A weak 1392.1 9 γ ray with Iγ=0.06 3 in 1970Ta07 and tentatively placed from a 2787.8 level is not confirmed in 2017Kr01, thus this γ and the level have been omitted.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E_i (level)	\mathbf{J}_i^{π}	E_f J	\mathbf{J}_f^{π}	Mult. ^a	δ^{a}	α^{d}	Comments
98.611 25	0.063 3	1493.856	9/2+	1395.267 7/	/2-	[E1]		0.0670	%Iγ=0.056 3 α (K)=0.0599 9; α (L)=0.00612 9; α (M)=0.000888 13 α (N)=4.51×10 ⁻⁵ 7 Exercise 5 L k=0.067 7 (10707c01)
121.591 10	2.58 5	511.558	3/2-	389.978 1/	/2-	(M1(+E2))	-0.01 +13-16	0.041 9	$\begin{aligned} & (19702001), \\ & (19702001), \\ & (19702001), \\ & (19702001), \\ & (19702001), \\ & (19702001), \\ & (19702001), \\ & (1970120101), \\ & (197012010101), \\ & (1970120101), \\ & (1970120101), \\ & (1970120101)$
142.820 10	5.16 10	1107.490	7/2-	964.689 5/	/2-	(M1(+E2))	-0.05 4	0.0274 10	% Iγ=4.59 10 α(K)=0.0244 9; α(L)=0.00257 10; α(M)=0.000375 14 α(N)=2.00×10 ⁻⁵ 7 Eγ=142.60 5, Iγ=6.0 6 (1970Zo01). Eγ=142.7 2, Iγ=5.7 20 (1970Ta07). Eγ=143.4 3, Iγ=5.1 11 (1969Co20). Eγ=143.0 5, Iγ=7 2 (1967Li01). (143γ)(965γ)(θ): A ₂ =-0.17 4, A ₄ =-0.03 5; A ₂ =-0.18 4 if A ₄ =0 (1978Kr06). δ: -0.05 4 (1978Kr06) is the average of +0.01 6 and -0.11 6 from two different cascades. δ =-4.9 +12-22 or >12 are also possible solutions but the lower values are in better agreement.
368.499 [#] 22	0.085 4	1476.006	5/2-	1107.490 7/	/2-	[M1+E2]		0.0042 17	$\alpha(K)=0.0037 \ 15; \ \alpha(L)=0.00039 \ 16; \ \alpha(M)=5.7\times10^{-5} \ 23 \ \alpha(N)=3.0\times10^{-6} \ 12 \ \%$ [y=0.076 4
386.371 10	100 1	1493.856	9/2+	1107.490 7/	/2-	(E1) ^b		1.25×10^{-3}	%Ιγ=89.0 <i>11</i>

 $\boldsymbol{\omega}$

						⁷¹ Zn	β^- de	cay (4.140 h) 2017Kr01,1970Zo01,1970Ta07 (continued)
								γ ⁽⁷¹ Ga) (continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E_i (level)	\mathbf{J}_i^{π}	$\underline{\mathrm{E}}_{f} \ \mathbf{J}_{f}^{\pi}$	Mult. ^a	δ ^a	α^{d}	Comments
								a(K)=0.001122 16; α(L)=0.0001134 16; α(M)=1.655×10 ⁻⁵ 24 α(N)=8.82×10 ⁻⁷ 13 Ey=386.28 5, Iy=100 (1970Zo01). Ey=386.3 2, Iy=100 (1967Li01). Ey=386.3 2, Iy=100 (1967Li01). (386y)[143γ](965γ)(θ): A ₂ =-0.079 12, A ₄ =+0.016 15; A ₂ =-0.072 11 if A ₄ =0 (1978Kr06). δ(E2/M1)=-1.4 1 (1969Kh10) based on 7/2 \rightarrow 7/2 \rightarrow 5/2 sequence for 387-620 cascade. (386γ)[143γ](965γ)(θ): A ₂ =-0.11 3, A ₄ =-0.11 5 (1976Sa39). (386γ)[596γ](512γ)(θ): A ₂ =+0.026 12, A ₄ =+0.008 18; A ₂ =+0.028 10 if A ₄ =0. (386γ)[596γ](512γ)(θ): A ₂ =+0.024 213, A ₄ =-0.012 35 (1976Sa39). (386γ)[596γ](512γ)(θ): A ₂ =+0.024 20, A ₄ =-0.003 24; A ₂ =+0.002 17 if A ₄ =0. (386γ)[596γ](122γ)(θ): A ₂ =+0.024 7, A ₄ =+0.020 12; A ₂ =+0.037 6 if A ₄ =0. (386γ)[596γ](612γ)(θ): A ₂ =+0.023 6, A ₄ =-0.039 10 (1976Sa39). (386γ)[620γ](487γ)(θ): A ₂ =+0.023 6, A ₄ =-0.039 10 (1976Sa39). (386γ)[6107γ)+(1107γ)(386γ)(θ): A ₂ =-0.017 19, A ₄ =+0.066 (1976Sa39). (386γ)(107γ)+(1107γ)(386γ)(θ): A ₂ =-0.017 19, A ₄ =+0.096 6 (1976Sa39). (386γ)(107γ)+(1107γ)(386γ)(θ): A ₂ =-0.017 19, A ₄ =+0.096 6 if A ₄ =0 (1978Kr06). (386γ)(143γ)(θ): A ₂ =+0.047 18, A ₄ =-0.014 27; A ₂ =+0.042 16 if A ₄ =0 (1978Kr06). (386γ)(143γ)(θ): A ₂ ==+0.039 11, A ₄ ==-0.016 6 (1976Sa39). (386γ)(1596γ)(θ): A ₂ ==-0.067 7, A ₄ =-0.003 11; A ₂ ==-0.096 6 if A ₄ =0 (1978Kr06). (386γ)(596γ)(θ): A ₂ ==-0.020 9, A ₄ =-0.032 13 (1976Sa39). (386γ)(596γ)(θ): A ₂ ==-0.018 7, A ₄ =+0.03 3 (1975BeYD) gives δ(M2/E1)=0.12 2 for 386γ with δ(M3/E2)=-0.45 5 for 596γ. (386γ)(620γ)(θ): A ₂ ==-0.018 7, A ₄ ==-0.043 10 (1976Sa39). (386γ)(620γ)(θ): A ₂ ==-0.13 17, A ₄ ==-0.043 10 (1976Sa39). (386γ)(620γ)(θ): A ₂ ==-0.108 7, A ₄ ==-0.043 10 (1976Sa39). (386γ)(620γ)(θ): A ₂ ==-0.108 7, A ₄ ==-0.043 10 (1976Sa39). (386γ)(620γ)(θ): A ₂ ==-0.13 17, A ₄ ==-0.043 10 (1976Sa39). (386γ)(620γ)(θ): A ₂ ==-0.13 17, A ₄ ==-0.043 10 (1976Sa39). (386γ)(620γ)(θ): A ₂ ==-0.13 112, A ₄ ==-0.043 10 (1975BeYD) giving δ(M2/E1)=0.12 2 for 386γ with δ(E2/M1)==0.07 2 for 620γ.

 $^{71}_{31}{
m Ga}_{40}$ -4

				71 Zn β	^{8–} deca	y (4.140 h)	2017Kr01,1970Zo	01,1970Ta07	(continued)
							$\gamma(^{71}\text{Ga})$ (continued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^a	δ^{a}	α^{d}	Comments
389.979 10	2.99 3	389.978	1/2-	0.0	3/2-	(M1+E2)	0.0047 +35-30	0.00221	%I γ =2.66 3 α (K)=0.00198 3; α (L)=0.000202 3; α (M)=2.96×10 ⁻⁵ 5 α (N)=1.597×10 ⁻⁶ 23 E γ =389.87 5, I γ =2.8 3 (1970Zo01). E γ =389.6 5, I γ =2.5 10 (1970Ta07).
398.69 [#] 5	0.031 2	910.162	3/2-	511.558	3/2-	[M1+E2]		0.0033 12	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.0029 \ 11; \ \alpha(\mathbf{L}) = 0.00031 \ 12; \\ &\alpha(\mathbf{M}) = 4.5 \times 10^{-5} \ 17 \\ &\alpha(\mathbf{N}) = 2.3 \times 10^{-6} \ 9 \\ &\% \mathbf{I}\gamma = 0.0276 \ 18 \end{aligned} $
430.52 [#] 7	0.015 2	1395.267	7/2-	964.689	5/2-	[M1+E2]		0.0026 9	$\alpha(K)=0.0023 \ 8; \ \alpha(L)=0.00024 \ 9;$ $\alpha(M)=3.5\times10^{-5} \ 12$ $\alpha(N)=1.9\times10^{-6} \ 6$ %I $\gamma=0.0134 \ 18$
453.145 10	1.31 <i>I</i>	964.689	5/2-	511.558	3/2-	[M1+E2]		0.0023 7	%Iγ=1.166 <i>I3</i> α (K)=0.0020 7; α (L)=0.00021 7; α (M)=3.0×10 ⁻⁵ <i>I0</i> α (N)=1.6×10 ⁻⁶ 5 Eγ=453.08 7, Iγ=1.2 <i>I</i> (1970Zo01). Eγ=453.2 2, Iγ=1.6 2 (1970Ta07).
472.754 [#] 22 477.316 [#] 26	0.068 <i>3</i> 0.062 <i>2</i>	2720.017 964.689	7/2 ⁺ 5/2 ⁻	2247.264 487.389	7/2 ⁺ 5/2 ⁻	[M1+E2]		0.0019 6	%I γ =0.061 3 α (K)=0.0017 5; α (L)=0.00018 6; α (M)=2.6×10 ⁻⁵ 8 α (N)=1.4×10 ⁻⁶ 4 %I γ =0.0552 18
487.402 <i>10</i>	69.5 7	487.389	5/2-	0.0	3/2-	(M1+E2)	-0.024 <i>13</i>	1.32×10 ⁻³	%Iy=61.9 4 %Iy=61.9 4 α(K)=0.001180 17; α(L)=0.0001202 17; α(M)=1.760×10 ⁻⁵ 25 α(N)=9.51×10 ⁻⁷ 14 Ey=487.34 5, Iy=67 3 (1970Zo01). Ey=488.0 2, Iy=63 13 (1969Co20). Ey=488.0 10, Iy=69 5 (1967Li01). δ: -0.024 13 or -3.1 2 from γγ(θ) (1978Kr06); <0.12 deduced (1978Kr06) from known level lifetime and measured B(E2). δ(E2/M1)=+0.5 1 (1969Kh10) based on 7/2 → 5/2 → 3/2 sequence for 620-487 cascade.
511.556 12	31.5 3	511.558	3/2-	0.0	3/2-	M1+E2	-0.37 6	0.00128 4	% I_{γ} =28.1 3 α (K)=0.00115 3; α (L)=0.000117 4;

S

				71 Zn β^- de	ecay (4.14	0 h) 2017	Kr01,1970Zo	01,1970Ta07 (continued)
						γ (⁷¹ Ga) (continued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger c}$	E _i (level)	J_i^π	E_f	J_f^π	Mult. ^a	α^{d}	Comments
								$\begin{array}{l} \alpha(\mathrm{M}) = 1.71 \times 10^{-5} \ 5\\ \alpha(\mathrm{N}) = 9.21 \times 10^{-7} \ 25\\ \mathrm{E}\gamma = 511.55 \ 5, \ I\gamma = 30.5 \ 20 \ (1970\mathrm{Zo01}).\\ \mathrm{E}\gamma = 511.4 \ 2, \ I\gamma = 33 \ 3 \ (1970\mathrm{Ta07}).\\ \mathrm{E}\gamma = 511.7 \ 2, \ I\gamma = 28 \ 6 \ (1969\mathrm{Co20}).\\ \mathrm{E}\gamma = 512.0 \ 10, \ I\gamma = 32 \ 2 \ (1967\mathrm{Li01}).\\ \delta: \ -0.37 \ 6 \ \mathrm{or} \ -10 \ +3 - 10 \ \mathrm{from} \ \gamma\gamma(\theta) \ (1978\mathrm{Kr06}); \ 0.09 \ 3\\ \mathrm{deduced} \ (1978\mathrm{Kr06}) \ \mathrm{from} \ \mathrm{known} \ \mathrm{level} \ \mathrm{lifetime} \ \mathrm{and} \ \mathrm{measured}\\ \mathrm{B}(\mathrm{E2}); \ \mathrm{thus} \ \mathrm{a} \ \mathrm{preference} \ \mathrm{for} \ \mathrm{a} \ \mathrm{lower} \ \delta \ \mathrm{value}. \ \mathrm{Other:} \ 0.28 \ 1\\ (1975\mathrm{BeYD}) \ \mathrm{with} \ \delta(\mathrm{M3/E2}) = 0.45 \ 5 \ \mathrm{for} \ 512\gamma, \ \mathrm{which} \ \mathrm{seems} \ \mathrm{unrealistic}. \end{array}$
518.430 [#] 18	0.135 2	2600.873	(9/2)+	2082.451	(13/2 ⁺)	[E2]	0.0015 4	α (K)=0.0014 4; α (L)=0.00014 4; α (M)=2.1×10 ⁻⁵ 6 α (N)=1.1×10 ⁻⁶ 3 %Iy=0.1202 20
520 <i>^f</i>	<0.01	910.162	3/2-	389.978	1/2-			%I γ <0.0089 E _{γ} : from 1970Zo01 only, with I γ ≤0.02. This γ not seen by 2017Kr01, upper limit of I γ <0.01 was given. As mentioned in 1970Zo01, this line may be contributed by the ⁷¹ Zn g.s. decay, where 910-keV level in ⁷¹ Ga is also populated
527.71 [@] 4	0.050 3	2247.264	7/2+	1719.568	5/2-	[E1]		$\%$ [γ =0.045 3 E γ =528.6 3, [γ =0.05 2 (1970Zo01, from 1494 level). E γ =529 1 5 [γ =0.07 3 (1970Zo07, from 1494 level)
565.854 12	0.256 3	1476.006	5/2-	910.162	3/2-	[M1+E2]	0.0012 3	$%I_{\gamma}=0.228 \ 3$ $\alpha(K)=0.00108 \ 25; \ \alpha(L)=0.00011 \ 3; \ \alpha(M)=1.6\times10^{-5} \ 4$ $\alpha(N)=8.7\times10^{-7} \ 19$ $E_{\gamma}=566.2 \ 2, \ I_{\gamma}=0.21 \ 2 \ (1970Zo01).$ $E_{\gamma}=566.0 \ 3, \ I_{\gamma}=0.24 \ 6 \ (1970Ta07).$
574.684 17	0.149 2	964.689	5/2-	389.978	1/2-	[E2]	1.42×10 ⁻³	%I γ =0.1327 21 α (K)=0.001266 18; α (L)=0.0001306 19; α (M)=1.91×10 ⁻⁵ 3 α (N)=1.007×10 ⁻⁶ 14 E γ =574.9 2, I γ =0.12 1 (1970Zo01). E γ =575.0 3, I γ =0.21 6 (1970Ta07).
588.602 [@] 17	0.134 2	2082.451	(13/2+)	1493.856	9/2+	[E2]	1.32×10 ⁻³	% I γ =0.1193 20 α (K)=0.001180 17; α (L)=0.0001216 17; α (M)=1.775×10 ⁻⁵ 25 α (N)=9.38×10 ⁻⁷ 14 E γ =588.60 2, I γ =0.054 5 (1970Zo01, from 1498 level).
595.916 <i>10</i>	31.4 <i>3</i>	1107.490	7/2-	511.558	3/2-	E2 ^b	1.27×10^{-3}	% Iy=28.0 4 $\alpha({\rm K}){=}0.001138$ 16; $\alpha({\rm L}){=}0.0001172$ 17; $\alpha({\rm M}){=}1.711{\times}10^{-5}$ 24

From ENSDF

 $^{71}_{31}{
m Ga}_{40}$ -6

				71 Zn β	- de	cay (4.140	h) 2017Kr	01,1970Zo01,19	70Ta07 (continued)
							$\gamma(^{71}\text{Ga})$ (continued)	
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f J	\int_{f}^{π}	Mult. ^a	δ^{a}	α^{d}	Comments
									$\begin{aligned} \alpha(N) &= 9.05 \times 10^{-7} \ 13 \\ & \text{E}\gamma = 596.07 \ 7, \ I\gamma = 30 \ 2 \ (1970\text{Zool}). \\ & \text{E}\gamma = 595.9 \ 2, \ I\gamma = 29 \ 3 \ (1970\text{Ta07}). \\ & \text{E}\gamma = 596.2 \ 2, \ I\gamma = 28 \ 6 \ (1969\text{Co20}). \\ & \text{E}\gamma = 596.0 \ 10, \ I\gamma = 31 \ 2 \ (1967\text{Li01}). \\ & (596\gamma)(122\gamma)(\theta): \ A_2 = -0.11 \ 5, \ A_4 = +0.02 \ 6; \ A_2 = -0.11 \ 4 \ \text{if} \\ & A_4 = 0 \ (1978\text{Kr06}). \\ & (596\gamma)(512\gamma)(\theta): \ A_2 = -0.018 \ 14, \ A_4 = +0.012 \ 23; \ A_2 = -0.012 \ 13 \\ & \text{if } A_4 = 0 \ (1978\text{Kr06}). \\ & (596\gamma)(512\gamma)(\theta): \ A_2 = -0.003 \ 13, \ A_4 = +0.006 \ 20 \ (1976\text{Sa39}). \\ & (596\gamma)(512\gamma)(\theta): \ A_2 = +0.16 \ 3, \ A_4 = +0.04 \ 4 \ (1975\text{BeYD}) \ \text{gives} \\ & \delta(M3/E^2) = 0.45 \ 5, \ \text{which is unrealistic.} \end{aligned}$
620.084 <i>10</i>	61.2 6	1107.490	7/2-	487.389 5/	2-	M1+E2	+0.96 24	8.93×10 ⁻⁴ 22	δ(M3/E2)=0.45 5, which is unrealistic. %Iγ=54.5 7 $ α(K)=0.000799 20; α(L)=8.16×10^{-5} 21; α(M)=1.19×10^{-5} 3 $ $ α(N)=6.40×10^{-7} 16 $ Εγ=620.19 5, Iγ=61 3 (1970Zo01). Εγ=620.4 2, Iγ=57 5 (1970Ta07). Εγ=620.4 2, Iγ=64 13 (1969Co20). Εγ=620.0 10, Iγ=62 4 (1967Li01). $ (620γ)(487γ)(θ): A_2=-0.192 10, A_4=+0.020 16; A_2=-0.187 8 $ if A ₄ =0 (1978Kr06). δ(E2/M1)=-1.4 1 (1969Kh10) based on 7/2 → 7/2 → 5/2 sequence for 387-620 cascade. δ(E2/M1)=+7.7 13 or +0.4 2 (1969Kh10) based on 7/2→5/2→3/2 sequence for 620-487 cascade. $ (620γ)(487γ)(θ): A_2=-0.199 7, A_4=+0.007 10 (1976Sa39). $ $ (620γ)(487γ)(θ): A_2=+0.22 3, A_4=+0.07 4 (1969Kh10). $ δ: +0.72 +8-6 or +2.3 3 (1978Kr06). The smaller value is preferred from comparison of δ values deduced from different $γγ$ cascades. Other: 0.07 2 (1975BeYD).
753.395 10	3.57 4	2247.264	7/2+	1493.856 9/	2+	M1+E2	-0.085 15	5.05×10 ⁻⁴	$%I\gamma = 3.18 4$ $α(K) = 0.000452 7; α(L) = 4.57 \times 10^{-5} 7; α(M) = 6.69 \times 10^{-6} 10$ $α(N) = 3.63 \times 10^{-7} 5$ $E\gamma = 753.41 7, I\gamma = 3.5 3 (1970Zo01).$ $E\gamma = 753.2 I, I\gamma = 3.4 4 (1970Ta07).$ $E\gamma = 753.2 5, I\gamma = 2.6 6 (1969Co20).$ $E\gamma = 752.0 10, I\gamma = 4 1 (1967Li01).$ $δ: -0.085 15 \text{ or } +12 2 (1978Kr06).$ The lower value is preferred based on the systematics of hindrance of M1 transitions in this mass region. $(753\gamma)(386\gamma)(\theta): A_2 = +0.043 9, A_4 = -0.003 12; A_2 = +0.041 7$

				⁷¹ Zn	β^- dec	ay (4.140 h)	2017K	r01,1970Zo01	,1970Ta07 (continued)
							$\gamma(^{71}\text{Ga})$	(continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^a	δ^{a}	α^{d}	Comments
771.265 10	2.35 2	2247.264	7/2+	1476.006	5/2-	[E1]			if $A_4=0$ (1978Kr06). (753 γ)(386 γ)(θ): $A_2=+0.09$ 3, $A_4=-0.05$ 5 (1976Sa39). (753 γ)(386 γ)(θ): $A_2=-0.105$ 19, $A_4=+0.04$ 3 (1975BeYD) giving δ (E2/M1)=0.07 2 for 753 γ and δ (M2/E1)=0.07 2 for 386 γ . %I γ =2.092 24 E γ =771.26 7, I γ =2.2 2 (1970Zo01). E γ =771.2 1, I γ =2.0 3 (1970Ta07). E γ =771.3 5, I γ =1.2 3 (1969Co20). E γ =772 0 10 I γ =2 0 5 (1967 I j01)
^x 834.59 [#] 4	0.020 1								%Iv=0.0178 9
852.02 [#] 5	0.021 3	2247.264	$7/2^{+}$	1395.267	7/2-				%Iy=0.019 3
883.80 [#] 7	0.010 <i>1</i>	1395.267	7/2-	511.558	3/2-	[E2]		4.37×10 ⁻⁴	α (K)=0.000391 6; α (L)=3.97×10 ⁻⁵ 6; α (M)=5.81×10 ⁻⁶ 9 α (N)=3.11×10 ⁻⁷ 5 %I γ =0.0089 9
907.92 [#] 3	0.089 2	1395.267	7/2-	487.389	5/2-	[M1+E2]		0.00037 4	$\alpha(K)=0.00034 \ 3; \ \alpha(L)=3.4\times10^{-5} \ 4; \ \alpha(M)=5.0\times10^{-6} \ 5 \ \alpha(N)=2.67\times10^{-7} \ 24 \ \%I\gamma=0.0792 \ 19$
910.181 <i>21</i>	0.276 3	910.162	3/2-	0.0	3/2-	(M1+E2)	0.09 5	3.39×10 ⁻⁴	$\%_{1\gamma=0.246\ 3}$ $\alpha(K)=0.000303\ 5;\ \alpha(L)=3.06\times10^{-5}\ 5;\ \alpha(M)=4.48\times10^{-6}\ 7$ $\alpha(N)=2.43\times10^{-7}\ 4$ $E_{\gamma}=910.1\ 2,\ I_{\gamma}=0.33\ 3\ (1970Zo01).$ $E_{\gamma}=909\ 5\ 2,\ I_{\gamma}=0\ 32\ 6\ (1970Ta07).$
952.352 29	0.039 2	2450.649	7/2+	1498.325	9/2-				%Iy=0.0347 18
956.785 15	0.282 3	2450.649	7/2+	1493.856	9/2+				E γ =951.8 3, I γ =0.011 1 (1970Zo01). %I γ =0.251 3 E γ =956.7 2, I γ =0.21 2 (1970Zo01). E γ =956.8 2, I γ =0.29 6 (1970Ta07).

 $^{71}_{31}{
m Ga}_{40}$ -8

L

				71 Zn β^- d	ecay (4.	140 h) 20	17Kr01,19	70Zo01,1970Ta	07 (continued)
						$\gamma(^{71}$	Ga) (contin	ued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult. ^a	δ^{a}	α^{d}	Comments
964.670 ^e 10	4.95 ^{e‡} 40	964.689	5/2-	0.0	3/2-	M1+E2	+1.3 3	3.33×10 ⁻⁴ 9	%Iγ=4.4 4 $\alpha(K)=0.000298 \ 8; \ \alpha(L)=3.02\times10^{-5} \ 8; \ \alpha(M)=4.41\times10^{-6} \ 11$ $\alpha(N)=2.38\times10^{-7} \ 6$ Eγ=964.7 1, Iγ=4.6 5 (1970Zo01). Eγ=964.6 1, Iγ=5.0 5 (1970Ta07). Eγ=964.5 5, Iγ=3.9 12 (1969Co20). Eγ=963.0 15, Iγ=5 1 (1967Li01). Eγ=964.693 8, deduced from level-energy difference, in good agreement with the measured Eγ value for the doublet. Total Iγ=5.35 5 for the doublet. $\delta: +4.2 + 14 - 10$ or $+0.58 + 9 - 8$ from 1978Kr06. From lifetime arguments for 965 level given by 1978Kr06.
964.670 ^{e&} 10	0.40 ^e ‡ 40	1476.006	5/2-	511.558	3/2-				arger value is somewhat preferred. %I γ =0.4 4 E γ =964.6 3, I γ =0.5 3 (1970Zo01). E γ =964.441 7, deduced from level-energy difference, deviates by 0.230 keV from the measured E γ value for the doublet. (965 γ)(512 γ)(θ): A ₂ =+0.020 15, A ₄ =-0.07 3; A ₂ =+0.018
974.659 12	0.442 4	2450.649	7/2+	1476.006	5/2-				<i>14</i> if $A_4=0$. % $I_{\gamma}=0.394$ 5 $E_{\gamma}=974.7$ 2, $I_{\gamma}=0.38$ 4 (1970Zo01). $E_{\gamma}=974.7$ 2, $I_{\gamma}=0.36$ 7 (1970Ta07).
^x 977.466 [#] 23	0.049 2								%Iγ=0.0436 <i>18</i>
982.292 [#] 10	0.012 5	1493.856	9/2+	511.558	3/2-	[E3]		7.09×10 ⁻⁴	α (K)=0.000633 9; α (L)=6.57×10 ⁻⁵ 10; α (M)=9.60×10 ⁻⁶ 14 α (N)=5.10×10 ⁻⁷ 8 %I γ =0.011 5
988.640 <i>10</i>	1.46 <i>1</i>	1476.006	5/2-	487.389	9 5/2-	(M1+E2)	+0.17 5	2.87×10 ⁻⁴	% I _γ =1.300 <i>14</i> α (K)=0.000257 <i>4</i> ; α (L)=2.59×10 ⁻⁵ <i>4</i> ; α (M)=3.79×10 ⁻⁶ <i>6</i> α (N)=2.06×10 ⁻⁷ <i>3</i> E _γ =988.6 <i>2</i> , I _γ =1.3 <i>I</i> (1970Zo01, E _γ =998.6 in Table 1 is a misprint). E _γ =988.6 <i>I</i> , I _γ =1.2 <i>2</i> (1970Ta07). E _γ =987.8 <i>5</i> , I _γ =0.9 <i>2</i> (1969Co20). E _γ =987.0 <i>I</i> 5, I _γ =1.0 <i>5</i> (1967Li01). δ : +0.20 <i>3</i> or -2.8 <i>2</i> (1978Kr06) for J(1476 level)=5/2. (989 _γ)(487 _γ)(θ): A ₂ =-0.085 <i>I</i> 4, A ₄ =+0.030 <i>I</i> 6; A ₂ =-0.073 <i>I</i> 3 if A ₄ =0 (1978Kr06).

			7	1 Zn β^{-} dec	ay (4.1	40 h) 20	017Kr01,1970	Zo01,1970Ta07 (continued)
						$\gamma(^{71}$	Ga) (continue	<u>ed)</u>
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^a	α^{d}	Comments
								%Iγ=1.300 14 $\alpha(K)=0.000257 4$; $\alpha(L)=2.59\times10^{-5} 4$; $\alpha(M)=3.79\times10^{-6} 6$ $\alpha(N)=2.06\times10^{-7} 3$ Eγ=988.6 2, Iγ=1.3 1 (1970Zo01, Eγ=998.6 in Table 1 is a misprint). Eγ=988.6 1, Iγ=1.2 2 (1970Ta07). Eγ=987.8 5, Iγ=0.9 2 (1969Co20). Eγ=987.0 15, Iγ=1.0 5 (1967Li01). δ : +0.20 3 or -2.8 2 (1978Kr06) for J(1476 level)=5/2. (989γ)(487γ)(θ): A ₂ =-0.085 14, A ₄ =+0.030 16; A ₂ =-0.073 13 if A ₄ =0 (1978Kr06).
994.395 19	0.075 3	2488.239	(7/2)+	1493.856	9/2+			% $i\gamma$ =0.067 <i>3</i> E γ =994.6 <i>3</i> , I γ =0.032 <i>4</i> (1970Zo01). E γ =993.7 <i>7</i> , I γ =0.12 <i>6</i> (1970Ta07).
1006.439 [@] 10	0.85 1	1493.856	9/2+	487.389	5/2-	[M2]	6.28×10 ⁻⁴	%I γ =0.757 <i>11</i> $\alpha(K)$ =0.000562 <i>8</i> ; $\alpha(L)$ =5.74×10 ⁻⁵ <i>8</i> ; $\alpha(M)$ =8.40×10 ⁻⁶ <i>12</i> $\alpha(N)$ =4.55×10 ⁻⁷ <i>7</i> E γ =1006.5 <i>2</i> , I γ =0.8 <i>2</i> (1970Zo01, tentatively from 1494 level). E γ =1006.5 <i>I</i> , I γ =0.81 <i>20</i> (1970Ta07, from 1494 level). E γ =1007 0 <i>I</i> 0 (1969Co20, from 1494 level).
1010.926 <i>15</i>	0.506 9	1498.325	9/2-	487.389	5/2-	Q		%Iy=0.451 9 Ey=1011.4 2, Iy=0.73 7 (1970Zo01). Ey=1011.4 2, Iy=0.67 20 (1970Ta07). Ey=1008.0 25 Iy=2 1 (1967Li01, possible doublet)
$1012.231\ 22$	0.280 8	2488.239	$(7/2)^+$	1476.006	5/2-			%Iγ=0.249 7 %Iγ=0.0080 9
1085.381 [@] 25	0.042 2	2804.911	(7/2)+	1719.568	5/2-			% $I\gamma$ =0.0000 9 % $I\gamma$ =0.0374 <i>18</i> $E\gamma$ =1085.3 8, $I\gamma$ =0.044 7 (1970Zo01, tentatively placed from 1476 level). $E\gamma$ =1086.9 7, $I\gamma$ =0.09 4 (1970Ta07), from 1476 level).
1093.02 [@] 6	0.011 1	2488.239	$(7/2)^+$	1395.267	7/2-			% $I\gamma = 0.0098 \ 9$ E $\gamma = 1093.5 \ 7$, $I\gamma = 0.10 \ 4 \ (1970Ta07, unplaced)$.
1102.46 [#] 5	0.028 2	2600.873	$(9/2)^+$	1498.325	9/2-			%Iγ=0.0249 <i>18</i>
1107.334 ^{e&} 10	2.06 ^{e‡} 9	1107.490	7/2-	0.0	3/2-	[E2]	2.56×10 ⁻⁴	%I γ =1.83 8 $\alpha(K)$ =0.000228 4; $\alpha(L)$ =2.31×10 ⁻⁵ 4; $\alpha(M)$ =3.37×10 ⁻⁶ 5 $\alpha(N)$ =1.82×10 ⁻⁷ 3; $\alpha(IPF)$ =1.001×10 ⁻⁶ 14 $E\gamma$ =1107.4 2, I γ =2.2 3 (1970Zo01). $E\gamma$ =1107.2 2, I γ =2.9 5 (1970Ta07). $E\gamma$ =1108.2 10 (1969Co20). $E\gamma$ =1107.0 15, I γ =3 1 (1967Li01). $E\gamma$ =1107.480 7, deduced from level-energy difference, deviates by 0.154 keV from the measured $E\gamma$ value for the doublet. Total I γ =2.99 3 for the doublet.

 $^{71}_{31}{
m Ga}_{40}$ -10

From ENSDF

 $^{71}_{31}{
m Ga}_{40}$ -10

L

⁷¹ Zn $β^-$ decay (4.140 h) 2017Kr01,1970Zo01,1970Ta07 (continued)												
γ ⁽⁷¹ Ga) (continued)												
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^a	δ^{a}	Comments				
1107.334 ^{e&} 10	0.93 ^{e‡} 9	2600.873	(9/2)+	1493.856	9/2+	(E2+M1)	+3 +10-1	%I γ =0.83 8 E γ =1107.008 22, deduced from level-energy difference, deviates by 0.326 keV from the measured E γ value for the doublet. δ : +3 +10-1 for J(2601)=9/2 (1978Kr06). Other: +0.08 7 or +4.3				
1139.752 12	0.250 3	2247.264	7/2+	1107.490	7/2-			$\%$ I γ =0.223 3 E γ =1139.8 3, I γ =0.22 3 (1970Zo01). E γ =1139.8 8, I γ =0.21 5 (1970Ta07). E γ =1140.4 40 (1060Co20)				
^x 1190.63 4	0.018 <i>1</i>							Ey=1140.4 <i>To</i> (1969C020). %Iy=0.0160 9 Ey=1190.6 8, Iy=0.012 3 (1970Zo01). This γ was placed by 1970Zo01 from a 1702.1, 1/2 ⁺ level based on a comparison with the decay of a 1700-keV level in $(n,n'\gamma)$ work of 1969Ve03 where a strong 1188 γ and a weaker 1700 γ from this level were reported. As noted in 2017Kr01, later $(n,n'\gamma)$ data from 1984Ar09 are inconsistent with those in 1969Ve03, reporting gamma rays of 1188.2 and 1699.2 keV, with a larger intensity for the latter, and that the energy and intensity of the 1190.6 γ ray in ⁷¹ Zn β^- decay were inconsistent with improved $(n,n'\gamma)$ data from 1984Ar09 (also 1977SmZI). For this reason 1190.6 γ is kept as an unplaced γ ray.				
1208.005 22	0.037 1	1719.568	5/2-	511.558	3/2-			%Iy=0.0329 9 Ey=1208.0 5, Iy=0.023 4 (1970Zo01).				
1226.152 30	0.026 1	2720.017	7/2+	1493.856	9/2+			$\%$ [γ =0.0232 9 E γ =1226.5 6, [γ =0.020 3 (1970Zo01),				
1232.181 24	0.035 1	1719.568	5/2-	487.389	5/2-			$\%$ I γ =0.0312 9 E γ =1/32 80 6 I γ =0.030 4 (19707 \circ 01)				
1243.989 17	0.066 2	2720.017	7/2+	1476.006	5/2-			%Iy=0.0588 <i>18</i> $F_{\rm V}=0.0588$ <i>18</i> $F_{\rm V}=0.0660$ (10707.201)				
1282.562 <i>15</i>	0.284 3	2247.264	7/2+	964.689	5/2-			$E_{\gamma}=1244.2$ 6, $I_{\gamma}=0.000$ 9 (19702001). % $I_{\gamma}=0.253$ 3 $E_{\gamma}=1282.7$ 3, $I_{\gamma}=0.29$ 3 (1970Zo01). $E_{\gamma}=1282.8$ 6, $I_{\gamma}=0.24$ 5 (1970Ta07). $E_{\gamma}=1282.4$ <i>I</i> (0.1650Co20)				
1306.565 21	0.126 2	2804.911	(7/2)+	1498.325	9/2-			$\gamma_{Y=1285.4}$ 70, $\gamma_{Y=0.2}$ 7 (1909C020). %I $\gamma_{=0.1122}$ 20 $E_{\gamma=1306.7}$ 2, $I_{\gamma=0.12}$ 7 (1970Zo01). Exercise 1206 7 10 [x=0.12.5] (1070Te07, upplesed)				
1311.016 22	0.124 2	2804.911	(7/2)+	1493.856	9/2+			$\%_{I\gamma=0.1104} 20$ $\Xi_{\gamma}=1311.4 2, I_{\gamma}=0.11 I (1970Zo01).$				
1321.891 14	0.249 4	2815.784	7/2+	1493.856	9/2+			$\%$ I γ =0.222 4 E γ =1322.2 2, I γ =0.25 3 (1970Zo01). E γ =1322.2 6, I γ =0.26 3 (1970Ta07).				

⁷¹ Zn β ⁻ decay (4.140 h) 2017Kr01,1970Zo01,1970Ta07 (continued)									
						$\gamma(^{71}\text{Ga})$	(continued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^a	α^{d}	Comments	
1339.80 6	0.012 1	2815.784	7/2+	1476.006	5/2-			%Ιγ=0.0107 9	
1343.129 21	0.048 2	2450.649	7/2+	1107.490	7/2-			$E\gamma = 1339.74, 1\gamma = 0.0112 (19702001).$ % $I\gamma = 0.042718$	
1380.713 15	0.391 4	2488.239	(7/2)+	1107.490	7/2-			$E\gamma = 1343.7 \ 4, \ I\gamma = 0.049 \ 6 \ (1970Zo01).$ % $I\gamma = 0.348 \ 5$ $E\gamma = 1380.8 \ 2, \ I\gamma = 0.39 \ 4 \ (1970Zo01).$	
1395.254 19	0.093 1	1395.267	7/2-	0.0	3/2-	E2	2.06×10 ⁻⁴	E γ =1380.5 3, I γ =0.32 6 (1970Ta07). %I γ =0.0828 11 α (K)=0.0001381 20; α (L)=1.391×10 ⁻⁵ 20; α (M)=2.03×10 ⁻⁶ 3 α (N)=1.099×10 ⁻⁷ 16; α (IPF)=5.20×10 ⁻⁵ 8 Exercise 125 2.4 br = 0.00 L (1970Ta01)	
^x 1409.26 4	0.011 <i>1</i>							$E\gamma = 1395.2 \ 4, \ 1\gamma = 0.09 \ 1 \ (19702001).$ $E\gamma = 1396.4 \ 9, \ 1\gamma = 0.10 \ 5 \ (1970Ta07).$ $\%I\gamma = 0.0098 \ 9$ $E\gamma = 1409.1 \ 10, \ I\gamma = 0.007 \ 2 \ (1970Zo01).$ Earlier placement from 2805 level by 1970Zo01 is not supported by	
1475.972 14	0.68 1	1476.006	5/2-	0.0	3/2-	(M1+E2)		2017Kr01, based on level-energy differences. %I γ =0.605 <i>10</i> $E\gamma$ =1476.0 2, I γ =0.65 6 (1970Zo01). $E\gamma$ =1475.9 3, I γ =0.57 <i>11</i> (1970Ta07). $E\gamma$ =1475.6 <i>10</i> , I γ =0.5 2 (1969Co20).	
1485.874 19	0.057 1	2450.649	7/2+	964.689	5/2-			E _Y =1475.0 20, I _Y : weak (1967Li01). %I _Y =0.0508 10 E _Y =1485.8 4, I _Y =0.050 5 (1970Zo01). E _Y =1486.4 8, I _Y =0.05 3 (1970Ta07). E _Y : somewhat poor fit, level-energy difference gives E _Y =1485.940 10	
1493.802 ^e 19	0.070 ^e ‡ 4	1493.856	9/2+	0.0	3/2-	[E3]	2.72×10 ⁻⁴	%I γ =0.062 4 α (K)=0.000215 3; α (L)=2.19×10 ⁻⁵ 3; α (M)=3.20×10 ⁻⁶ 5 α (N)=1.725×10 ⁻⁷ 25; α (IPF)=3.21×10 ⁻⁵ 5 E γ =1493.8 4, I γ =0.054 6 (1970Zo01). E γ =1493.6 8, I γ =0.05 3 (1970Ta07). E γ =1493.848 8, deduced from level-energy difference, in good agreement with the measured E γ value for the doublet. Total I γ =0.076 2 for the doublet.	
1493.802 ^{<i>e</i>&f} 19	$0.006^{e^{\ddagger}} 4$	2600.873	(9/2)+	1107.490	7/2-			%I γ =0.005 4 E γ =1493.366 23, deduced from level-energy difference, deviates by 0.435 keV from the measured E γ value for the doublet.	
^x 1503.44 4	0.015 1							%Iy=0.0134 9 E ₂ =1503 8 5 Iy=0.013 3 (1970Z ₀ 01)	
1612.55 4	0.015 1	2720.017	7/2+	1107.490	7/2-			$%I\gamma = 0.0134 9$ E $\gamma = 1612.2 5$, I $\gamma = 0.013 3$ (1970Zo01).	

L

γ ⁽⁷¹Ga) (continued) α^{d} Ev δ^{a} E_i (level) Mult.^a Comments E≁ 2804.911 $(7/2)^{+}$ 1107.490 7/2- $%I\gamma = 0.0071 \ 9$ 1697.35 6 0.008 Ey=1697.6 3, Iy=0.005 1 (1970Zo01). 1708.311 19 0.092 1 2815.784 $7/2^{+}$ 1107.490 7/2-%Iy=0.0819 11 $E\gamma = 1708.25$, $I\gamma = 0.091$ (1970Zo01). $E\gamma = 1707.1 \ 10, \ I\gamma = 0.07 \ 3 \ (1970Ta07).$ 2.67×10^{-4} 10 +1.451719.574 23 $5/2^{-}$ $%I\gamma = 0.0436 \ 10$ 0.049 1 1719.568 0.0 $3/2^{-}$ M1+E2 $\alpha(K) = 8.97 \times 10^{-5}$ 15; $\alpha(L) = 9.00 \times 10^{-6}$ 16; $\alpha(M) = 1.315 \times 10^{-6}$ 23 $\alpha(N)=7.14\times10^{-8}$ 12; $\alpha(IPF)=0.000167$ 8 $E\gamma = 1719.2$ 7. $I\gamma = 0.04$ 1 (1970Zo01). 1759.865 18 0.104 2 2247.264 $7/2^{+}$ 487.389 5/2-%Iy=0.0926 19 $E\gamma = 1759.6 \ 2, \ I\gamma = 0.10 \ I \ (1970Zo01, \ I\gamma = 1.0 \ I \ in \ Table \ 1 \ of$ 1970Zo01 is a misprint as pointed out by K. Krane (Oregon) in an email communication of April 29, 2016 to the evaluators, the value should be 0.10 I, also confirmed by W.B. Walters (Maryland) in an email reply of May 6, 2016). $E\gamma = 1758.4 \ 15 \ (1969Co20).$ 1840.183 22 0.050 1 2804.911 $(7/2)^+$ 964.689 5/2- $%I_{\nu}=0.0445\ 10$ Eγ=1840.0 4, Iγ=0.050 5 (1970Zo01). 1905.65 8 0.006 1 2815.784 $7/2^{+}$ 910.162 3/2-[M2] 2.57×10^{-4} $%I_{\gamma}=0.00539$ $\alpha(K)=0.0001304\ 19;\ \alpha(L)=1.313\times10^{-5}\ 19;\ \alpha(M)=1.92\times10^{-6}\ 3$ $\alpha(N)=1.046\times 10^{-7}$ 15; $\alpha(IPF)=0.0001116$ 16 Eγ=1905.2 7, Iγ=0.0048 6 (1970Zo01). 1963.41 7 $7/2^{+}$ 487.389 5/2- $%I\gamma = 0.0071 \ 9$ 0.008 1 2450.649 Ey=1963.8 7, Iy=0.006 1 (1970Zo01). 6.73×10⁻⁴ 11 2000.75 10 $%I\gamma = 0.0053 9$ 0.006 1 2488.239 $(7/2)^{+}$ 487.389 5/2-[E1,M2] $\alpha(K)=3.96\times10^{-5}$ 10; $\alpha(L)=3.95\times10^{-6}$ 10; $\alpha(M)=5.77\times10^{-7}$ 14 $\alpha(N)=3.13\times10^{-8}$ 8; $\alpha(IPF)=0.000629$ 10 Eγ=2000.9 8, Iγ=0.004 1 (1970Zo01). 2317.54 4 0.068 2 2804.911 $(7/2)^{+}$ 487.389 5/2-%Iy=0.0605 19 Eγ=2317.7 6, Iγ=0.07 1 (1970Zo01). $4.04 \times 10^{-4} 25$ $%I\gamma = 0.00719$ 2488.37 9 0.008 1 2488.239 $(7/2)^+$ 0.0 $3/2^{-}$ [M2.E3] $\alpha(K) = 7.35 \times 10^{-5} 21$; $\alpha(L) = 7.38 \times 10^{-6} 20$; $\alpha(M) = 1.08 \times 10^{-6} 3$ $\alpha(N)=5.88\times10^{-8}$ 17; $\alpha(IPF)=0.00032$ 3 Eγ=2489.4 8, Iγ=0.005 1 (1970Zo01).

2017Kr01,1970Zo01,1970Ta07 (continued)

 71 Zn β^{-} decay (4.140 h)

[†] From 2017Kr01. Values from 1970Zo01, 1970Ta07, 1969Co20 and 1967Li01 are listed under comments, but not used in the evaluation, as data from 2017Kr01 are much more precise than in any of the previous studies.

[‡] Intensities of the 964.7 γ , 1107.3 γ and 1493.8 γ doublets divided in two components each based on level and gamma energies, as well as compared with $\gamma\gamma$ -coin data from 1970Zo01.

From ENSDF

γ ⁽⁷¹Ga) (continued)

[#] This γ ray reported by 2017Kr01 only.

[@] Revised placement of γ transition in 2017Kr01.

& E γ value not included in the least-squares fit procedure due to poor agreement. Note that this γ is doubly placed.

^{*a*} From Adopted Gammas. Arguments and values from decay studies in this dataset are given under comments, which are mainly from $\gamma\gamma(\theta)$ in 1978Kr06.

^b 1978Kr06 assumed E1 for 386 γ and E2 for 596 γ in the analysis of their $\gamma\gamma(\theta)$ data. Measured A₂=-0.071 for 386-596 cascade supports these assumptions.

^c For absolute intensity per 100 decays, multiply by 0.8903 69.

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^e Multiply placed with intensity suitably divided.

^f Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

⁷¹Zn β^- decay (4.140 h) 2017Kr01,1970Zo01,1970Ta07

⁷¹Zn β^- decay (4.140 h) 2017Kr01,1970Zo01,1970Ta07

