Adopted Levels

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 188,1 (2023)	17-Jan-2023

 $Q(\beta^{-})=12440 \text{ syst}; S(n)=3110 \text{ syst}; S(p)=18770 \text{ syst}; Q(\alpha)=-15090 \text{ syst}$ 2021Wa16

Estimated uncertainties (2021Wa16): 610 for $Q(\beta^{-})$, 500 for S(n), 640 for S(p), 570 for $Q(\alpha)$.

 $S(2n)=8870\ 450$, $S(2p)=36880\ 640$, $Q(\beta^-n)=6520\ 400$ (syst, 2021Wa16). $Q(\beta^-2n)=2318\ 410$ (deduced by evaluators from mass values in 2021Wa16).

1997Be70: ⁷¹Fe produced and identified in ⁹Be(²³⁸U,X) reaction at 750 MeV/nucleon followed by mass separation in a magnetic spectrometer, time-of-flight and energy loss measurements. Measured production cross section. Additional information 1.

2002MaZN (thesis): ⁷¹Fe produced in fragmentation of ⁸⁶Kr beam at 57.8 MeV/nucleon at GANIL facility, LISE 2000 fragment separator, time-of-flight method, EXOGAM array for γ -ray detection. Measured β , isotopic half-life.

- 2011Da08 (also 2002MaZN thesis): ⁷¹Fe produced in the fragmentation of 57.8 MeV/nucleon ⁸⁶Kr beam impinged on 50 mg/cm² thick tantalum target using LISE-2000 spectrometer at GANIL facility. Detector system included a three-element Si-detector telescope containing a double-sided silicon-strip detector (DSSSD) backed by a Si(Li) detector and surrounded by four clover type EXOGAM Ge detectors. Products identified by mass, atomic number, charge, energy loss and time of flight. Measured half-life from (implants) β correlated events.
- 2013Ma87: ⁷¹Fe produced in ⁹Be(⁸⁶Kr,X), E(⁸⁶Kr)=140 MeV/nucleon reaction at the NSCL-MSU facility. Target: 440 mg/cm² ⁹Be. Neutron rich Fe isotopes were separated using A1900 fragment separator. Detected β and γ radiation by NSCL beta counting system. Measured time-of-flight and energy loss for identification of isotope. SeGA array was used for γ counting. Measured half-life by time distribution of β particles detected correlation with implanted ⁷¹Fe ions. The $\beta\gamma$ -coincidence events in correlation with ⁷¹Fe implants were also detected, but the statistics were very low. Comparison with FRDM+QRPA and Df3a++CQRPA theoretical calculations.
- 2014XuZZ (thesis): ⁷¹Fe produced in ⁹Be(²³⁸U,F), E=345 MeV/nucleon, and separated using BigRIPS and ZeroDegree spectrometers at RIBF-RIKEN facility, followed by β and γ counting using EURICA array for γ rays. Measured half-life of decay of ⁷¹Fe by (⁷¹Fe implants) β -correlated events, and by β (215.5 γ)-coin decay curve. According to Fig. 3.7 showing a plot of yields of different isotopes, a large number of events were assigned to ⁷¹Fe.
- 2015BeZR: ⁷¹Fe produced in ⁹Be(²³⁸U,F),E=345 MeV/nucleon, and separated using BigRIPS and ZeroDegree spectrometers at RIBF-RIKEN facility, followed by β and γ counting. A total of 26346 implants of ⁷¹Fe were recorded.
- Theoretical calculations: 2010Af01: calculated impact of nuclear magnetism (NM) on binding energies, quadrupole deformation, total neutron current distributions, neutron and proton dependencies of additional binding energies, and energy splittings between signature of single-particle states using NL3 parametrization of relativistic mean field (RMF) Lagrangian.

⁷¹Fe Levels

E(level)	T _{1/2}	Comments	
0	35.7 ms 20	³ 20 %β ⁻ =100; %β ⁻ n=?; %β ⁻ 2n=? The β ⁻ decay mode has been detected, and it is the only decay possible, thus 100% β ⁻ is assigned Theoretical T _{1/2} =69.8 ms, %β ⁻ n=16, %β ⁻ 2n=0 (2019Mo01). Theoretical T _{1/2} =48.6 ms, %β ⁻ n=4.2, 4.6; %β ⁻ 2n=0.16, 0.23 (2021Mi17). T _{1/2} : from weighted average of 34.7 ms 36 (2014XuZZ, time distribution of β(215.5γ)-coin events 36.6 ms 20 (2014XuZZ, time distribution of β(⁷¹ Fe implants), where fitting involved half-lives of and β ⁻ n daughters, and respective grand daughters, together with theoretically estimated %β ⁻ n weighted for Fig. 3.7 in this work it appears that a larger number of ⁷¹ Fe nuclei were detected); 42 ms (2013Ma87, time distribution of β(⁷¹ Fe implants)-correlated events, with 184 implants); and 28 (2011Da08, 2002MaZN, (implants)β-correlated events, fitting procedure included five parameter β-detection efficiency, background rate, mother, daughter and grand-daughter half-lives). J ^π : 7/2 ⁺ from systematics (2021Ko07); Ω _n =5/2 ⁺ orbital (2019Mo01, theory).	