Adopted Levels, Gammas

	History							
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh and Jun Chen	NDS 188,1 (2023)	17-Jan-2023					

 $Q(\beta^{-})=4618 \ 3; \ S(n)=7806.1 \ 18; \ S(p)=10786.2 \ 26; \ Q(\alpha)=-9814 \ 7 2021$ Wal6

S(2n)=13117.5 20, S(2p)=26900 90 (2021Wa16).

Mass measurement: 2007Gu09.

Other measurements:

1983Ru06: produced by 76 Ge on W, E=9 MeV/nucleon, on-line mass separation and tape-transport system; measured half-life. 1999Pr10: production in 76 Ge fragmentation.

2008St01: E=1 GeV proton beam provided by CERN PS booster. ⁷¹Cu beam was obtained using the ISOLDE fragment separator and implanted in the NICOLE detector system. The refrigerator temperature was varied between 1 K and 11-12 mK. Measured nuclear dipole moment of g.s. using β -NMR method on oriented nuclei at low temperatures.

2009F103, 2010Vi07: in-source laser spectroscopy and collinear laser spectroscopy at ISOLDE-CERN facility. Measured spin, and static magnetic moment and static quadrupole moment of the ground state.

2016Bi08: ⁷¹Cu isotope was produced by bombarding UC_x target with 1.4 GeV proton beam at the CERN-ISOLDE facility. Cu isotopes were selectively ionized by the RILIS laser ion source, accelerated to 30 keV, mass separated with the high-resolution mass separator, and injected into the gas-filled linear Paul trap. Measured isotope shift with respect to ⁶⁵Cu using the collinear laser spectroscopy setup. Studied systematics of isotope shifts on ^{58–75}Cu isotopes. Compared with droplet model predictions.

2020De21: ⁷¹Cu isotope was produced by bombarding ²³⁸U target with neutrons produced by impinging a 1.4 GeV proton beam on a neutron converter at the CERN-ISOLDE facility. Cu isotopes were selectively ionized by the RILIS laser ion source, accelerated to 30 keV for mass separation with high-resolution mass separator, and injected into ISCOOL gas-filled linear Paul trap. Measured isotope shift with respect to ⁶⁵Cu using collinear resonance ionization spectroscopy.

Additional information 1.

Theoretical calculations:

2022Ba29, 2021Ro19: calculated energies of the ground-state and the first-excited state, J^{π} of g.s. using simple effective interaction (SEI) with and without the addition of a short-range tensor force to SEI and SIII-T, SLy5-T, SAMi-T Skyrme and D1MTd Gogny effective interaction.

2022Ma30: calculated ground state energy, electric quadrupole moment, charge radius using shell model and other theoretical approaches.

2020Bo22: calculated charge radius using the self-consistent theory of finite Fermi systems and the family of energy density functionals.

2018Mi22: calculated M1 γ -strength function using large-scale shell model.

2018Na18: calculated potential energy curves, binding energy per nucleon, deformation parameters, total quadrupole moments, $T_{1/2}$, radius, electron- and positron-capture rates using the density-dependent relativistic mean field (RMF) model.

2015Ka46: calculated binding energy, effective single-particle energies of proton orbit, level energies of low-lying, low spin states and B(E2) values, magnetic moments and electric quadrupole moments using shell model.

2012Sr02, 2012Sr03: calculated low-lying level energies, J^{π} , B(E2) using shell model.

2010Da06: calculated low-lying levels, J^{π} using shell model.

2010Si11: calculated levels, J^{π} , neutron and proton orbital occupancies, magnetic moments, g factors using large-scale shell model. 2005Li54: calculated level energies, J^{π} using shell model.

2004Sm03: calculated level energies, spectroscopic factors, monopole shift using shell model.

2003Ji09: calculated deformation, superdeformed configurations using relativistic mean-field approach.

⁷¹Cu Levels

Cross Reference (XREF) Flags

Α	⁷¹ Ni β^{-} decay (2.56 s)	Ε	Coulomb excitation
В	⁷¹ Ni β^- decay (2.3 s)	F	¹⁹⁸ Pt(⁷⁶ Ge,X γ)
С	$^{2}H(^{72}Zn,^{3}He)$	G	208 Pb(70 Zn,X γ)
D	9 Be(76 Ge,X γ),Ni(86 Kr,X γ)	Н	238 U(64 Ni,X γ)

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁷¹Cu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments		
0.0#	3/2 ⁽⁻⁾	19.4 s <i>16</i>	ABcDEFGH	$\beta^{-}=100$ $\mu=+2.2772 \ 8 \ (2009F103,2010Vi07,2019StZV)$ $Q=-0.200 \ 17 \ (2010Vi07,2016St14,2021StZZ)$		
				Change in radius $\delta < r^2 > (^{65}Cu, ^{71}Cu) = +0.44 \text{ fm}^2 2(\text{stat}) 7(\text{syst})$. Isotope shift $\delta v (v^{71}Cu - v^{65}Cu) = +2787 \text{ MHz } 4$ (2020De21, ISOLDE-CERN, RILIS ion source and ISCOOL gas-filled linear Paul trap). See also review article 2017Ne04 about Collinear laser spectroscopy at ISOLDE-CERN.		
				Change in radius $\delta < r^2 > ({}^{65}Cu, {}^{71}Cu) = +0.407 \text{ fm}^2$ <i>11</i> (stat) <i>44</i> (syst). Isotope shift $\delta v (v^{71}Cu - v^{65}Cu) = +1526.5 \text{ MHz } 91$ (2016Bi08, ISOLDE-CERN, RILIS ion source and ISCOOL gas-filled linear Paul trap)		
				μ: from in-source laser spectroscopy and collinear laser spectroscopy at CERN, ISOLDE facility (2009Fl03, 2010Vi07); measured value of +2.2747 8 is evaluated by 2019StZV to +2.2772 8. Other: +2.28 <i>I</i> from β-NMR method on nuclei oriented at low temperatures (2008St01) is in agreement. See also 2011Go17 for analysis of magnetic moments from laser spectroscopy and nuclear magnetic resonance frequencies from β-NMR experiments; and 2017Ne04 review article.		
				 Q: from in-source laser spectroscopy and collinear laser spectroscopy at CERN, ISOLDE facility (2010Vi07), measured value of -0.190 <i>16</i> in this work is re-evaluated by 2016St14 to -0.200 <i>17</i>. See also 2017Ne04 review article about Collinear laser spectroscopy at ISOLDE-CERN. J^π: from in-source laser spectroscopy and collinear laser spectroscopy at CERN, ISOLDE facility (2009Fl03, 2010Vi07). Negative parity is 		
				suggested by dominant $\pi 2p_{3/2}$ orbital assignment from comparison of measured static magnetic and quadrupole moments with large-scale shell-model calculations (2010Vi07), as well as L(d, ³ He)=1+3 from 0 ⁺ target for an unresolved level at 110 <i>190</i> populated in ² H(⁷² Zn, ³ He). T _{1/2} : from timing of γ rays; weighted average of 19 s 3 (1999Pr10) and		
				19.5 s $I6$ (1983Ru06).		
454.20 10	(1/2 ⁻)		ΒE	Configuration: $\pi 2p_{3/2}^{*} \otimes \nu 1g_{5/2}^{*}$ (2008St01). J ^{π} : level is Coulomb excited from $3/2^{(-)}$. T _{1/2} : measured B(E2)(W.u.) in 2008St04 (listed in Adopted Gammas) could not be used to obtain level half-life since $\delta(454\gamma)$ is unknown.		
534.37 [@] 7	(5/2 ⁻)		A cDEFGH	J ^{π} : level is Coulomb excited from 3/2 ⁽⁻⁾ ; L(d, ³ He)=1+3 from 0 ⁺ target for an unresolved level at 110 <i>190</i> populated in ² H(⁷² Zn, ³ He), which, in comparison with neighboring nuclei such as ⁶⁹ Cu, corresponds to g.s., 3/2 ⁽⁻⁾ + 534 level, π f _{5/2} , and not 454, (1/2 ⁻) level. T _{1/2} : measured B(E2)(W.u.) in 2008St04 (listed in Adopted Gammas) could not be used to obtain level half-life since δ (534 γ) is unknown		
981.33 [@] 8	(7/2 ⁻)	14 ps 6	A D GH	XREF: D(?). J^{π} : 981.3 γ to 3/2 ⁽⁻⁾ ; band member. $T_{1/2}$: from RDDS in (⁶⁴ Ni.X γ) (2015Sa09).		
1189.39 [#] 8	(7/2 ⁻)	1.15 ps <i>13</i>	A DEFGH	J^{π} : level is Coulomb excited from $3/2^{(-)}$; configuration= $\pi 2p_{3/2} \otimes (2^+ \text{ in } 70,72 \text{ Ni})$ consistent with B(E2) values (2008St04). T _{1/2} : deduced (evaluators) from B(E2)(W.u.)=10.7 <i>12</i> (2008St04) and branching ratio.		
1453.31 [@] 10	(9/2-)		A GH	J^{π} : 472.0 γ to (7/2 ⁻); band member.		
1033.3? / 1786.28 <i>10</i>	(9/2 ⁻)		A DFH	J ^{π} : 1251.8 γ to (5/2 ⁻); 341.8 γ from 2128, (11/2 ⁻) level; shell-model prediction in 2009St05.		
1845.69 12	(7/2 ⁻ ,9/2 ⁻)		A c	J^{π} : L(d, ³ He)=3 for 1860 <i>150</i> suggests 5/2 ⁻ ,7/2 ⁻ , with preference for		

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁷¹Cu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF		Comments
					$7/2^-$, $\pi f_{7/2}$ orbital (by 2015Mo22) for 1846 and/or 1895 levels
1895.10 21	$(7/2^{-})$		Ас		J^{π} : see comment for 1845.69 level.
1973.67 [@] 18	$(11/2^{-})$		А	GH	J^{π} : 472.0 γ to (9/2 ⁻): band member.
2128.29 [#] 13	$(11/2^{-})$		A D	FGH	J^{π} : 939.1 γ to (7/2 ⁻): band member.
2151.6? 4	(D		
2289.73? 13			Α		
2551.4 10	$(7/2^+)$		A		J ^π : allowed β transition (log ft =5.4) from (9/2 ⁺) parent; 2017.0γ to (5/2 ⁻).
2576.7 [@] 8	$(13/2^{-})$			G	J^{π} : 603 γ to (11/2 ⁻); band member.
2599.79 11			Α		
2623.14 [#] 19	$(15/2^{-})$	328 ps 17	D	FGH	J^{π} : 495.0 γ to 11/2 ⁻); band member.
					$T_{1/2}$: from $\gamma(t)$ (2003Ma50) in ⁹ Be(⁷⁶ Ge,X) reaction.
2686.40 14			A		
2751.12.23	(10/0=)	0.071	A		c/ IT 100
2756.1" 4	(19/2)	$0.2/1 \ \mu s \ 14$	D	FGH	%11 = 100 I^{π} : 132 0 μ to $(15/2^{-})$; hand member Proposed
					$s_1 = 152.97$ to $(15/2^{-7})$, band member. Troposed
					T _{1/2} : weighted average of 0.275 us 14 from Ni(⁸⁶ Kr Xy)
					and 0.25 μ s 3 from ¹⁹⁸ Pt(⁷⁶ Ge.X γ).
2805.88 11	$(7/2^+, 9/2^+, 11/2^+)$		Α		J^{π} : allowed β transition (log <i>ft</i> =5.2) from (9/2 ⁺) parent.
2867.3 8	$(7/2^+, 9/2^+)$		Α		J ^{π} : allowed β transition (log <i>ft</i> =5.5) from (9/2 ⁺) parent;
					1885.9γ to $(7/2^{-})$.
2925.19 23	$(7/2^+, 9/2^+, 11/2^+)$		A		J^{π} : allowed β transition (log <i>ft</i> =5.7) from (9/2 ⁺) parent.
2971.7 ^{••} 8	$(15/2^{-})$			G	J^{π} : 998 γ to (11/2 ⁻); possible band member.
3034.47 12	$(1/2^+, 9/2^+, 11/2^+)$		A		J [*] : allowed β transition (log ft=5.2) from (9/2 ⁺) parent.
$3.24 \times 10^{5} 20$	(7/2)		C		J^: L(d, He)=3; $7/2$ with $\pi I_{7/2}$ orbital preferred by
$3430.7^{@}$ 13	$(17/2^{-})$			C	I^{π} : 450_{2} to $(15/2^{-})$; band member
3430.7 13 436×10^3 17	$(17/2)^{-}$		C	G	J . 4597 to $(15/2)$, balle methods. E(level) I^{π} , wide near which may contain more than one
4.30×10 17	(1/2)		C		state however angular distribution is well fitted with only
					$L(d, {}^{3}He)=3$; $7/2^{-}$ with $\pi f_{7/2}$ orbital preferred by
					2015Mo22.
4776.5 6	$(23/2^{-})$			Н	J^{π} : 2020.3 γ to (19/2 ⁻); proposed
					configuration= $\pi p_{3/2} \otimes \nu((fp)^{10}g_{9/2}^4)$ (2009St05).
5330.7 8	$(25/2,27/2^{-})$		_	Н	J^{n} : 554.2 γ to (23/2 ⁻); yrast pattern of population.
5.92×10° 18	$1/2^+ \& (3/2)^+$		C		E(level), J ^{<i>n</i>} : doublet with L(d, ³ He)=0+2, $\pi s_{1/2}^{-1}$ for 1/2 ⁺
					and $(3/2)^{+}$ with $\pi d_{3/2}^{-1}$ orbitals preferred by 2015Mo22.

[†] From a least-squares fit to E γ data, assuming Δ E γ =0.5 keV for E γ quoted to nearest tenth keV and 1 keV for E γ quoted to keV, where $\Delta E \gamma$ not given.

[±] In addition to the arguments given with individual levels, assignments for many levels are also supported by shell-model calculations by 2021Pe08, 2015Li33, 2015Mo22, 2009St05 2008St04 and 1998Is11 in ⁷¹Ni decay, ²H(⁷²Zn,³He), Coulomb excitation, and several heavy-ion reaction studies. [#] Band(A): Band based on $3/2^{(-)}$. Configuration= $\pi p_{3/2} \otimes \nu(g_{9/2}^2)$.

[@] Band(B): $\Delta J=1$ band based on (5/2⁻).

Adopted Levels, Gammas (continued)								
$\gamma^{(71}Cu)$								
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult.	α &	Comments
454.20	(1/2 ⁻)	454.2 1	100	0.0	3/2 ⁽⁻⁾	[M1+E2]	0.0018 6	B(E2)(W.u.)=20.4 22 (2008St04) E _v : from Coulomb excitation.
534.37	(5/2 ⁻)	534.4 1	100	0.0	$3/2^{(-)}$			B(E2)(W.u.)=3.95 (2008St04). E : others: 534.4.6 from (⁷⁶ Ge X ₂) and 534.3.2 from (⁶⁴ Ni X ₂)
981.33	(7/2 ⁻)	447.0 <i>1</i>	30.0 22	534.37	(5/2 ⁻)	[M1,E2]	0.0019 7	If M1, B(M1)(W.u.)=0.0041 +29-13. If E2, B(E2)(W.u.)=30 +22-9. E_{γ} : weighted average of 446.9 <i>I</i> from ⁷¹ Ni β^- decay (2.56 s) and 447.2 2 from (⁶⁴ Ni,X γ).
		981.3 <i>1</i>	100 3	0.0	3/2 ⁽⁻⁾	[E2]		I_{γ} : other: 29.5 from (* NI,X γ). B(E2)(W.u.)=2.0 +14-6
1189.39	(7/2 ⁻)	655.1 <i>1</i>	10.1 11	534.37	(5/2 ⁻)	[M1,E2]		E _γ , t _γ : other: 981.5.2 with ty=100 <i>TO</i> from ($-N_1Xy$). If M1, B(M1)(W.u.)=0.0063 +10-9. If E2, B(E2)(W.u.)=21.4 +35-31. E _γ : other: 654.9.2 from (⁶⁴ Ni,Xγ). I _γ : weighted average of 9.6 <i>18</i> from ⁷¹ Ni β ⁻ decay (2.56 s), 10.4 <i>11</i> from (⁶⁴ Ni, X ₂) and 9.6 <i>18</i> from Coulomb avairation
		1189.4 <i>1</i>	100 3	0.0	3/2 ⁽⁻⁾	[E2]		B(E2)(W.u.)=10.7 <i>12</i> (2008St04) E_{γ} : weighted average of 1189.5 <i>I</i> from ⁷¹ Ni β^{-} decay (2.56 s), 1189.1 <i>4</i> from ¹⁹⁸ Pt(⁷⁶ Ge,X γ), and 1189.2 <i>2</i> from (⁶⁴ Ni,X γ). I_{γ} : from ⁷¹ Ni β^{-} decay (2.56 s). Others: 100 <i>4</i> from (⁶⁴ Ni,X γ) and 100.0 <i>30</i> from Coulomb excitation.
1453.31	(9/2 ⁻)	472.0 1	100	981.33	(7/2 ⁻)			E_{γ} : other: 471.9 2 from (⁶⁴ Ni,X γ).
1633.3? 1786.28	(9/2 ⁻)	652 eu 1251.8 <i>I</i>	100	981.33 534.37	$(1/2^{-})$ $(5/2^{-})$			E_{γ} : weighted average of 1251.7 <i>I</i> from ⁷¹ Ni β ⁻ decay (2.56 s) and 1252.2 2 from (⁶⁴ Ni Xγ). Other: 1251.6 9 from (⁷⁶ Ge, Xγ).
1845.69	(7/2 ⁻ ,9/2 ⁻)	1311.3 <i>1</i>	100	534.37	(5/2 ⁻)			
1895.10 1973.67	$(1/2^{-})$ $(11/2^{-})$	705.7 2 520.3 2	100 100	1189.39 1453.31	$(7/2^{-})$ $(9/2^{-})$			E_{γ} : weighted average of 520.2 <i>l</i> from ⁷¹ Ni β ⁻ decay (2.56 s) and 520.6 2 from (⁶⁴ Ni X ₂)
		992 [#]		981.33	$(7/2^{-})$			520.0 2 Holl (11,747).
2128.29	(11/2 ⁻)	341.8 [‡] 2	11.8 <i>15</i>	1786.28	(9/2 ⁻)			E_{γ} : other: 342.4 9 from ¹⁹⁸ Pt(⁷⁶ Ge,Xγ). I _γ : weighted average of 16 8 from ¹⁹⁸ Pt(⁷⁶ Ge,Xγ) and 11.6 <i>15</i> from (⁶⁴ Ni,Xγ).
		495 ^{@a}	L.	1633.3?				
		674.9 [‡] 5 939.1 2	$1.9^{\mp} 6$ 100 6	1453.31 1189.39	(9/2 ⁻) (7/2 ⁻)			 E_γ: weighted average of 939.5 2 from ⁷¹Ni β⁻ decay (2.56 s), 939.1 4 from ¹⁹⁸Pt(⁷⁶Ge,Xγ), and 939.1 2 from (⁶⁴Ni,Xγ). I_γ: from (⁶⁴Ni,Xγ). Other: 100 <i>10</i> from ¹⁹⁸Pt(⁷⁶Ge,Xγ).
2151.6? 2289.73?		2151.0 [@] a 161.4 1	100	0.0 2128.29	3/2 ⁽⁻⁾ (11/2 ⁻)			

4

 $^{71}_{29}Cu_{42}$ -4

Adopted Levels, Gammas (continued)										
	γ ⁽⁷¹ Cu) (continued)									
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.	α &	Comments		
2551.4	(7/2+)	2017.0 10	100	534.37	(5/2-)					
2576.7	(13/2 ⁻)	603 [#]		1973.67	$(11/2^{-})$					
2599.79		1410.4 1	100	1189.39	$(7/2^{-})$					
2623.14	$(15/2^{-})$	471.0 ^{@u}	100	2151.6?	(11/2-)		1.07.10-3.2	$\mathbf{P}(\mathbf{F}_{2})(\mathbf{W}_{1}) = 2.10 \pm 12 - 12$		
		495.0 2	100	2128.29	(11/2)	[E2]	1.8/X10 ° 3	B(E2)(W.u.)=2.18 + 15 - 12 E_{γ} : weighted average of 494.7 3 from ¹⁹⁸ Pt(⁷⁶ Ge,X γ) and 495.1 2 from (⁶⁴ Ni,X γ).		
		649.4 [‡] 2	52 [‡] 4	1973.67	$(11/2^{-})$					
2686.40		1497.1 2	100	1189.39	$(7/2^{-})$					
2751.12	$(10/2^{-})$	1297.8 2	100	1453.31	$(9/2^{-})$	[E0]	0 2070 24	$D(E_2)(W_{1-1}) = 2.20 + 12 - 12$		
2756.1	(19/2)	132.9 2	100	2623.14	(15/2)	[E2]	0.2079 34	B(E2)(W.U.)=2.38 +15-12 α (K)=0.1844 30; α (L)=0.02049 34; α (M)=0.00285 5 α (N)=7.28×10 ⁻⁵ 12		
								E_{γ} : weighted average of 133.0 3 from ¹⁹⁶ Pt(⁷⁰ Ge,X\gamma) and		
2805 88	$(7/2^+ 9/2^+ 11/2^+)$	206.1.7	26.6	2599 79				132.8 2 from $(\circ^{1}Ni,X\gamma)$.		
2005.00	(7,2,3,2,11,2)	1019.0 3	84 7	1786.28	$(9/2^{-})$					
		1352.6 <i>1</i>	100 9	1453.31	$(9/2^{-})$					
2867.3	$(7/2^+, 9/2^+)$ $(7/2^+, 0/2^+, 11/2^+)$	1885.9 8	100	981.33	$(7/2^{-})$					
2923.19	$(1/2^{+}, 9/2^{+}, 11/2^{+})$	205 [#]	100	1780.28	(9/2)					
2971.7	(13/2)	000#		2370.7	(15/2)					
3034.47	$(7/2^+, 9/2^+, 11/2^+)$	998 348.1 <i>1</i>	27.5	2686.40	(11/2)					
	(,,_,,,_,,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,	744.7 1	19 5	2289.73?						
		1248.2 <i>1</i>	100 11	1786.28	(9/2-)					
2 120 5	(17/2-)	1581.0 4	31 7	1453.31	$(9/2^{-})$					
3430.7	$(1^{\prime})/(2^{-})$	459 ^m		2971.7	$(15/2^{-})$					
47/6.5	$(23/2^{-})$	2020.3+ 5		2/56.1	$(19/2^{-})$					
5330.7	$(25/2,27/2^{-})$	554.2 + 5		4776.5	$(23/2^{-})$					

[†] From ⁷¹Ni β^- decay (2.56 s), unless otherwise noted. [‡] From ²³⁸U(⁶⁴Ni,X γ). [#] From ²⁰⁸Pb(⁷⁰Zn,X γ). [@] From ⁹Be(⁷⁶Zn,X γ),Ni(⁸⁶Kr,X γ).

S

[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Placement of transition in the level scheme is uncertain.

 $^{71}_{29}{\rm Cu}_{42}$

Adopted Levels, Gammas

 $^{71}_{29}Cu_{42}$