²H(⁷²Zn,³He) 2015Mo22

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 188,1 (2023)	17-Jan-2023

Adapted from compiled dataset for XUNDL database by E.A. McCutchan (NNDC, BNL), March 25, 2016.

2015Mo22: ⁷²Zn beam of E=38 MeV/nucleon from fragmentation of a primary ⁷⁶Ge beam on a 733– μ m ⁹Be target. Reaction products selected with the LISE spectrometer at GANIL facility. The ⁷²Zn beam (with purity of 90.6%) then impinged on a deuterated polypropylene target with thickness of 0.26 mg/cm². Measured ³He spectra and $\sigma(\theta)$ using four 20 μ m silicon-strip detectors and four Must2 telescopes, and identified by measurement of time-of-flight and Δ E-E, with FWHM=680 keV. Deduced L-transfers and spectroscopic factors by analyzing data using DWBA calculations, and comparison to shell model calculations using *fpgd* valence space.

⁷¹Cu Levels

E(level)	$J^{\pi \dagger}$	L‡	$C^2S^{\#}$	Comments
11×10 ¹ 19	3/2-&5/2-	1+3	0.8,1.4	E(level): assumed to be a doublet consisting of $3/2^-$ ground state and $5/2^-$, 534 keV state. From energy and L-transfer considerations, known level at 454, $1/2^-$ could also be a part of this composite peak, but 2015Mo22 provide arguments, based on comparison with much weaker population of 1110, $1/2^-$ level, as compared to $3/2^-$ g.s. in ⁶⁹ Cu in (d, ³ He), that this level is not expected to be populated strongly in the present work. C ² S: 0.8 2 for L=1, $3/2^-$ (π p _{3/2}); 1.4 6 for L=3, $5/2^-$ (π f _{5/2}), with the assumption of no contribution from the 454, $1/2^-$ level. Proposed configuration: $60\% \pi p_{3/2} \otimes 0^+$, $14\% \pi p_{3/2} \otimes 2^+$ for the $3/2^-$ g.s.; $36\% \pi f_{5/2} \otimes 0^+$, $22\% \pi f_{5/2} \otimes 4^+$ for the $5/2^-$ at 310 keV theoretical level energy.
1.86×10 ³ 15	7/2-	3	1.4 2	
$3.24 \times 10^3 \ 20$	7/2-	3	1.5 3	
4.36×10 ³ 17	7/2-	3	3.7 6	E(level): wide peak which may contain more than one state, however, angular distribution is well fitted with only $L=3$.
5.92×10 ³ 18	1/2+&3/2+	0+2	0.4,3.0	C ² S: 0.4 <i>I</i> for L=0, $1/2^+$; 3.0 5 for L=2, $3/2^+$. E(level): doublet.

[†] As assigned by 2015Mo22.

[‡] From DWBA fit to $\sigma(\theta)$ using DWUCK5 code.

[#] From comparison to DWBA calculations.