| History         |                           |                  |                        |  |  |  |  |  |
|-----------------|---------------------------|------------------|------------------------|--|--|--|--|--|
| Туре            | Author                    | Citation         | Literature Cutoff Date |  |  |  |  |  |
| Full Evaluation | Balraj Singh and Jun Chen | NDS 188,1 (2023) | 17-Jan-2023            |  |  |  |  |  |

 $Q(\beta^{-})=1104\times10^{1}$  47;  $S(n)=592\times10^{1}$  47; S(p)=14770 syst;  $Q(\alpha)=-13210$  syst 2021Wa16

Estimated uncertainties (2021Wa16): 550 for S(p), 510 for Q( $\alpha$ ).

 $S(2n)=10130\ 470,\ S(2p)=33590\ 610\ (syst),\ Q(\beta^-n)=6770\ 470\ (2021Wa16).$ 

- 1992We04: <sup>71</sup>Co produced and identified by fragmentation of 500 MeV/nucleon <sup>86</sup>Kr beam incident on a beryllium target followed by mass separation in a magnetic spectrometer using in addition time-of-flight and energy loss measurements for nuclide identification. Measured production cross section.
- 1998Am04 (also 1997AmZZ thesis): <sup>71</sup>Co produced in the fragmentation of <sup>86</sup>Kr beam at 500 MeV/nucleon with <sup>9</sup>Be target at GSI facility. Fragment recoil separator used to separate fragments. Magnetic rigidity and time-of-flight method used to identify the isotope. Measured half-life.
- 2005GaZR thesis (also 2003So21): <sup>71</sup>Co produced in the fragmentation of <sup>76</sup>Ge beam at 61.8 MeV/nucleon with <sup>58</sup>Ni target at GANIL facility. Lise3 spectrometer was used to separate fragments. Magnetic rigidity and time-of-flight method used to identify the isotope. Measured  $\beta$ , half-life.
- 2011Da08 (also 2004Sa59, 2002MaZN thesis): <sup>71</sup>Co produced in the fragmentation of 57.8 MeV/nucleon <sup>86</sup>Kr beam impinged on 50 mg/cm<sup>2</sup> thick tantalum target, followed by separation of fragments using LISE-2000 spectrometer at GANIL facility. Detector system included a three-element Si-detector telescope containing a double-sided silicon-strip detector (DSSSD) backed by a Si(Li) detector and surrounded by four clover type EXOGAM Ge detectors. Products identified by mass, atomic number, charge, energy loss and time of flight. Measured  $\gamma$  rays,  $\beta\gamma$ -coin, half-life of <sup>71</sup>Co decay.
- 2012Ra10 (also 2005Ma95): <sup>71</sup>Co produced in fragmentation of <sup>86</sup>Kr beam at 140 MeV/nucleon with a <sup>9</sup>Be target at NSCL-MSU facility, followed by separation of fragments using A1900 fragment separator. Particle identification was carried out by energy loss (E- $\Delta$ E) and time-of-flight techniques. The ions were implanted in double-sided silicon strip (DSSD) detectors for fragment and  $\beta$  detection. SeGA gamma-detector array containing 16 HPGe detectors was used for  $\beta\gamma$ -coin, ion- $\beta$  correlations and isotopic half-life measurements.

Additional information 1.

- 2019Ly02: <sup>71</sup>Co from primary beam of <sup>86</sup>Kr at 140 MeV/nucleon impinged on a <sup>9</sup>Be target at the NSCL-MSU facility. <sup>71</sup>Co separated using A1900 separator, and identified using energy loss and time-of-flight information from a plastic scintillator detector and two silicon PIN detectors, followed by implantation of <sup>71</sup>Co nuclei in a 1 mm thick double-sided silicon strip detector (DSSD) which was placed in the geometric center of the Summing NaI(Tl) (SuN) detector. Measured half-life of <sup>71</sup>Co decay, and total absorption  $\gamma$  spectrum (TAGS) from <sup>71</sup>Co decay.
- 2020MoZS: one of the evaluators (B. Singh) enquired from the first author (A. Morales) about the possibility of extracting  $\%\beta^-n$  for the decay of <sup>72</sup>Co investigated by 2016Mo07. Dr. A. Morales in her e-mail communication of May 26, 2020 sent us extracted decay branches for  $\%\beta^-n$  and  $\%\beta^-2n$  for <sup>70,71,72,73,74</sup>Co from analysis of intensities of  $\gamma$  rays emitted in the decay chains of several isotopes, including granddaughters and great-granddaughters. However, some concern was expressed by A. Morales about the quality of the deduced  $\%\beta^-n$  and  $\%\beta^-2n$  branching ratios, thus the value of  $\%\beta^-n$  is listed by the evaluators here as approximate.

Theoretical calculations:

2020Ca08: calculated levels,  $J^{\pi}$  using shell-model for the spherical and  $1/2^{-}$  intruder bands.

<sup>71</sup>Co Levels

Cross Reference (XREF) Flags

 $^{1}$ H( $^{72}$ Ni,2p $\gamma$ )

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$ | T <sub>1/2</sub> | XREF | Comments                                                                                                          |  |
|-----------------------|--------------------|------------------|------|-------------------------------------------------------------------------------------------------------------------|--|
| 0                     | $(7/2^{-})$        | 80 ms 3          | A    | $\%\beta^{-}=100; \%\beta^{-}n\approx 16.2 (2020 MoZS)$                                                           |  |
|                       |                    |                  |      | $\%\beta^{-}n \approx 16.2$ (2020MoZS). This communication also states $\%\beta^{-}2n=1.4.3$ but $O(\beta^{-}2n)$ |  |

 $%β^-$ n ≈ 16 2 (2020MoZS). This communication also states % $β^-$ 2n=1.4 3, but Q( $β^-$ 2n) is -533 470, which forbids this decay mode. Other: <2.7 9 from estimate of intensity of 1259γ in <sup>70</sup>Ni (2012Ra10). The observation of 1259γ ray in <sup>71</sup>Co decay confirms

Continued on next page (footnotes at end of table)

## Adopted Levels, Gammas (continued)

## <sup>71</sup>Co Levels (continued)

| E(level) <sup>†</sup>    | Jπ‡                                        | XREF   | 2 Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|--------------------------|--------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                          |                                            |        | <sup>%</sup> β <sup>-</sup> =100; %β <sup>-</sup> n≈16 2 (2020MoZS)<br>%β <sup>-</sup> n ≈ 16 2 (2020MoZS). This communication also states %β <sup>-</sup> 2n=1.4 3, but Q(β <sup>-</sup> 2n) is -533 470,<br>which forbids this decay mode. Other: <2.7 9 from estimate of intensity of 1259γ in <sup>70</sup> Ni<br>(2012Ra10). The observation of 1259γ ray in <sup>71</sup> Co decay confirms existence of the<br>delayed-neutron decay mode. Note that 2005Ma95 stated %β <sup>-</sup> n≥3 1, which probably should have<br>read ≤3 1.<br>Theoretical T <sub>1/2</sub> =33.3 ms, %β <sup>-</sup> n=4 (2019Mo01).<br>Theoretical T <sub>1/2</sub> =179 ms, %β <sup>-</sup> n=7.0, 8.5 (2021Mi17).<br>J <sup>π</sup> : possible πt <sup>-1</sup> <sub>1/2</sub> configuration based on systematics (2009St07, 2012Ra10).<br>T <sub>1/2</sub> : weighted average of 86 ms 10 (2019Ly02, (implants))-correlated decay curve); 80 ms 3<br>(2012Ra10, time distribution of β-gated γ events); and 79 ms 5 (2011Da08,2004Sa59,2002MaZN,<br>time distribution of (implants)β correlated events, where fitting procedure included five<br>parameters: β-detection efficiency, background rate, mother, daughter and granddaughter<br>half-lives). Others: 97 ms 2 (2003So21,2005GaZR); 210 ms 40 (1998Am04,1997AmZZ). As<br>discussed by 2004Sa59, the half-lives measured by 1998Am04 are systematically higher by a<br>factor of two or three. The difference in measured half-lives (79 ms and 97 ms) in the two<br>GANIL measurements may suggest existence of two activities populated in two different reactions.<br>Even-A Co isotopes generally show isomerism, but no isomerism has yet been found in odd-A Co<br>isotopes. In the absence of confirming evidence for the existence of an isomer in <sup>71</sup> Co, evaluators<br>adopt only one half-lives likely that a mistake was made in their work since there was an overall<br>consistency in the measured half-lives of other isotopes. |  |  |
| 892 20<br>1817 <i>34</i> | (9/2 <sup>-</sup> )<br>(7/2 <sup>-</sup> ) | A<br>A | - · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |

<sup>†</sup> From  $E\gamma$  data.

<sup>±</sup> Proposed by 2020Lo06 from shell-model prediction.

 $\gamma$ <sup>(71</sup>Co)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $\mathbf{E}_{f}$ | $\mathrm{J}_f^\pi$ |
|------------------------|----------------------|------------------------|------------------------|------------------|--------------------|
| 892                    | (9/2 <sup>-</sup> )  | 892 20                 | 100                    | 0                | $(7/2^{-})$        |
| 1817                   | (7/2 <sup>-</sup> )  | 925 27                 | 100                    | 892              | $(9/2^{-})$        |

<sup>†</sup> From 2020Lo06.

## Adopted Levels, Gammas

## Level Scheme

Intensities: Relative photon branching from each level



<sup>71</sup><sub>27</sub>Co<sub>44</sub>