71 Kr ε decay (94.9 ms) 2022Wa34,1997Oi01

Type	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balrai Singh and Jun Chen	NDS 188.1 (2023)	17-Jan-2023		

Parent: 71 Kr: E=0; $J^{\pi}=(5/2)^{-}$; $T_{1/2}=94.9$ ms 4; $Q(\varepsilon)=1018\times10^{1}$ 13; $\%\varepsilon+\%\beta^{+}$ decay=100

1997Oi01: ⁹³Nb(p,X) at 1 GeV, CERN-ISOLDE facility. Pure Kr beam was implanted into an aluminized Mylar film. Measured E γ , I γ , β , β -delayed protons, $\gamma\gamma$, $\gamma\beta$ coin, T_{1/2}. Detection system: gas-Si detector telescope for protons, HPGe detectors for γ and x rays, telescope plastic scintillation detectors for high-energy β rays, gas-Si detector for low-energy β rays.

2005Fi10: reinterpretation of γ -ray spectrum in 1997Oi01, but details of these results are not available.

1982Ha32: isotopic identification and measurement of half-life.

1981Ew01: ⁹³Nb(p,X),E=1 GeV at CERN, chemical mass separation. plastic scintillator telescope; measured half-life.

Production and identification of ⁷¹Kr:

2002Lo13, 2002B117, 1995B123: C(78Kr,X),E=73 MeV/nucleon.

⁷¹Br Levels

2022Wa34 reported little evidence for coincidence of 208 γ from a 407-keV γ ; which would indicate population of the 615-keV level in ⁷¹Br, as tentatively proposed by 2005Fi10, with 208 γ and 407 γ from this level. In the decay scheme proposed by 2022Wa34, a 615 level with $J^{\pi}=3/2^{-}$,7/2 $^{-}$ was listed, but it was assumed that this level was not populated in the decay of ⁷¹Kr.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\ddagger}$	Comments
0.0	$(5/2)^{-}$	21.4 s 6	J^{π} : 5/2 ⁻ in 2022Wa34.
9.86 <i>14</i>	$(1/2^{-})$		E(level): from the Adopted Levels.
			J^{π} : 1/2 ⁻ in 2022Wa34.
207.97 16	$(3/2^{-})$		J^{π} : 3/2 ⁻ in 2022Wa34.
407.12 24	$(5/2)^{-}$		J^{π} : 5/2 ⁻ in 2022Wa34.
			Level proposed by 2005Fi10 from spectral data of 1997Oi01, and confirmed by 2022Wa34.
1861+x			E(level): $S(p)(^{71}Br)+x$, where x<8319 keV, from $Q(e)(^{71}Kr)-S(p)(^{71}Br)$.
			E(level): wide group from E(p)=1.5 to 5.5 MeV, this proton group feeding the g.s. and the
			first excited state of ⁷⁰ Se (2022Wa34). Other: ≈4250 (1997Oi01) from wide group from
			$E(p)\approx 2.3$ MeV, a broad bump at this energy, assuming that this proton group feeds the g.s.
			of ⁷⁰ Se.

[†] From least-squares fit to Eγ data.

 $^{^{71}}$ Kr-J $^{\pi}$,T $_{1/2}$: From 71 Kr Adopted Levels.

⁷¹Kr-Q(ε): From 2021Wa16.

⁷¹Kr-%ε+%β⁺ decay: %εp=3.06 27 (2022Wa34) for the decay of ⁷¹Kr, deduced from measurement of β-delayed proton spectrum correlated with implants. Other %εp: 2.1 7 (1997Oi01), 5.2 6 (1995Bl23).

²⁰²²Wa34: 71 Kr produced in 9 Be(92 Mo,X),E=140 MeV/nucleon reaction, followed by separation of ions of interest using A1900 fragment separator and a Radio Frequency Fragment Separator (RFFS) at the Coupled Cyclotron Facility of NSCL-MSU. The ions in the cocktail beam were implanted into the β -counting station (BCS), which consisted of a stack of PIN detector (PIN2) and Double-Sided Silicon-Strip Detector (DSSSD) for detection of implants, surrounded by the SeGA array of 16 HPGe detectors for γ detection. Measured E γ , I γ , (implants) β -coin, (implants)(β -delayed protons)-coin, (implants) γ -coin, (implants) β -coin, T_{1/2} of decay of γ -coin events, γ -coin events, γ -coin events, absolute (per 100 decays of parent) intensities of γ -rays, and intensities of β -delayed protons.

[‡] From the Adopted Levels.

71 Kr ε decay (94.9 ms) 2022Wa34,1997Oi01 (continued)

ε, β^+ radiations

E(decay)	E(level)	Ιβ ⁺ ‡	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(4×10 ^{3#} 4)	1861+x				3.06 27	$I(\varepsilon + \beta^+)$: from measured delayed-proton branch (2022Wa34). Others: 2.1% 7 (1997Oi01), 5.2% 6 (1995Bl23).
(9.77×10 ³ <i>13</i>)	407.12	4.4 <i>4</i>	0.0086 9	4.87 5	4.4 4	av E β =4152 65; ε K=0.00171 8; ε L=0.000195 9; ε M+=3.91×10 ⁻⁵ 18 I(ε + β ⁺): 4.32% 36 (2022Wa34). Other: I(ε + β ⁺) \approx 15% estimated by 2005Fi10 based on γ -ray intensities deduced by the authors from γ -ray spectrum of 1997Oi01, which is in severe disagreement with the value in 2022Wa34.
(9.97×10 ³ 13)	207.97	1.0 8	0.0018 15	5.6 4	1.0 8	av E β =4251 65; ε K=0.00160 7; ε L=0.000183 8; ε M+=3.66×10 ⁻⁵ 17 I(ε + β ⁺): 1.02 71 in 2022Wa34. Other I(ε + β ⁺): 15.8% 14 (1997Oi01), based on relative efficiency of the γ -ray detectors with respect to the particle telescope; 15% (2005Fi10, from reanalysis of data in 1997Oi01). Both the values are in severe disagreement from that in 2022Wa34.
(1.018×10 ⁴ 13)	0.0	91.3 9	0.156 7	3.65 3	91.5 9	av E β =4353 65; ε K=0.00150 7; ε L=0.000171 8; ε M+=3.42×10 ⁻⁵ 15 I(ε + β ⁺): from 100-summed feeding to excited states. 91.6 20 in 2022Wa34; 89% from β measurement (2022Wa34), 82.1% 16 (1997Oi01), 68% (2005Fi10, from reanalysis of data in 1997Oi01).

[†] Deduced by evaluators from I(γ +ce) balances in the decay scheme, with g.s. ε + β + feeding from 100–(ε + β + feeding to the excited states). The values are very slightly different from those in 2022Wa34. The analysis of the γ -ray spectra and decay scheme by 2022Wa34 assumed negligible ε + β + feedings to the levels above the 407 level, which seems justified by directly measured β feeding of 89% in 2022Wa34.

[‡] Absolute intensity per 100 decays.

[#] Estimated for a range of levels.

$\gamma(^{71}{\rm Br})$

Iy normalization: 2022Wa34 determined absolute γ -ray intensities.

 ω

1997Oi01 reported I γ (relative)<8 for a 262 γ from a 262 level, and I γ (relative)<10 for a 599 γ from an 806 level; based on observation of the γ rays and levels in in-beam γ -ray study by 1990Ar23. These two γ were not reported by 2022Wa34 in the decay of 71 Kr.

E_{γ}	Ι _γ #@	E_i (level)	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^π	Mult.	δ	α &	$I_{(\gamma+ce)}^{}$	Comments
(9.86 14)		9.86	(1/2-)	0.0	(5/2)-	[E2]		5.2×10 ³ 4	2.7 7	$\alpha(L)$ =4.4×10 ³ 4; $\alpha(M)$ =7.0×10 ² 6; $\alpha(N)$ =45 4 E_{γ} : from the Adopted Levels, Gammas dataset. $I_{(\gamma+ce)}$: deduced by evaluators from intensity balance at 9.8-keV level.
198.0 [‡] 2	2.07 60	207.97	(3/2 ⁻)	9.86	(1/2 ⁻)	(M1+E2)	+0.21 7	0.0208 16		$\alpha(K)$ =0.033 19 ; $\alpha(L)$ =0.0039 23 ; $\alpha(M)$ =6.E-4 4 ; $\alpha(N)$ =5.5×10 ⁻⁵ 31 Others: E γ =198/199 (2022Wa34) as unresolved doublet; E γ =198, I γ (relative)=100 (1997Oi01) or 85 from a reanalysis of γ -ray spectrum in 1997Oi01. 2005Fi10 suggested that 198 γ was a doublet, with 15% of this intensity belonging to a 199 γ from 407 level, and 85% to 198 γ from 208 level. This estimate is not confirmed by 2022Wa34, where I γ (198.0 from 208 level)/I γ (199.0 from 407 level)=0.81 25. Mult., δ : from the Adopted Levels, Gammas dataset.
199.0 [‡] 5	2.56 29	407.12	(5/2)	207.97	(3/2 ⁻)	[M1+E2]		0.04 3		$\alpha(K)$ =0.038 23; $\alpha(L)$ =0.005 3; $\alpha(M)$ =0.0007 5; $\alpha(N)$ =7.0×10 ⁻⁵ 4 Other Iy(relative)≈16 deduced by 2005Fi10 from γ -spectrum in 1997Oi01, and Iy(199 γ)/Iy(407 γ)=15/60 (2005Fi10). This value is in severe disagreement with that from 2022Wa34.
208.0 [†] 2	1.51 24	207.97	(3/2 ⁻)	0.0	(5/2)-	[M1+E2]		0.038 21		$\alpha(K)$ =0.033 19; $\alpha(L)$ =0.0039 23; $\alpha(M)$ =6.E-4 4; $\alpha(N)$ =5.5×10 ⁻⁵ 31 Other: Eγ: 208, Iγ(relative)=36 (1997Oi01). From a reanalysis of γ-ray spectrum in 1997Oi01, 2005Fi10 suggested that 208γ was a doublet with 207γ from 208 level, and a 208γ from a 615 level. From Iγ(207γ)/Iγ(198γ)=19/81 (2005Fi10); Iγ(208)(relative)≈20 from 208 level.
397.1 [†] 3	0.55 8	407.12	(5/2)-	9.86	(1/2-)	[E2]		0.00617 9		$\alpha(K)$ =0.00546 8; $\alpha(L)$ =0.000605 9; $\alpha(M)$ =9.59×10 ⁻⁵ 14; $\alpha(N)$ =8.78×10 ⁻⁶ 13 Other Iy(relative)≈27 deduced by 2005Fi10 from

⁷¹ Kr ε decay (94.9 ms)	2022Wa34,1997Oi01 (continued)
--	-------------------------------

γ (⁷¹Br) (continued)

E_{γ}	Ι _γ #@	E_i (level)	\mathtt{J}_{i}^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α&	Comments
407.4 [†] 4	1.21 20	407.12	(5/2)-	0.0	(5/2)-	(M1+E2)	-0.74 14	0.0044 13	γ -spectrum in 1997Oi01, and I γ (397 γ)/I γ (407 γ)=25/60 (2005Fi10). Mult.: Q in the Adopted Levels, Gammas dataset. α (K)=0.0039 <i>12</i> ; α (L)=0.00043 <i>13</i> ; α (M)=6.8×10 ⁻⁵ <i>21</i> ; α (N)=6.2×10 ⁻⁶ <i>19</i> Other I γ (relative)≈64 deduced by 2005Fi10 from spectrum in 1997Oi01. Mult., δ : from the Adopted Levels, Gammas dataset.

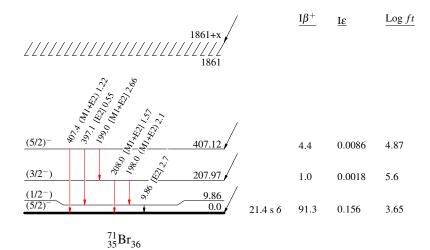
[†] From 2022Wa34.
‡ From 2005Fi10 in ⁴⁰Ca(⁴⁰Ca,2αργ).

Absolute (per 100 decays of ⁷¹Kr) intensities from 2022Wa34.

@ Absolute intensity per 100 decays.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

⁷¹Kr ε decay (94.9 ms) 2022Wa34,1997Oi01


Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

Decay Scheme

- $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ - $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ - $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ - γ Decay (Uncertain)

Legend

 $\%\varepsilon + \%\beta^{+} = 100 / Q_{\varepsilon} = 1018 \times 10^{1} I3$ $7_{36}^{1} Kr_{35}$ 94.9 ms 4

