⁵⁸Ni(¹⁶O,3pγ) 1999Fo02

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh and Jun Chen	NDS 188,1 (2023)	17-Jan-2023						

⁷¹As Levels

1999Fo02: $E(^{16}O)=59.5$ MeV. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$ - and $(recoil)\gamma$ -coin and $\gamma\gamma(\theta)(DCO)$ using Gammasphere array coupled to the Fragment Mass Analyzer at ATLAS-ANL facility. Only the negative-parity states are reported in this study. The authors stated that positive-parity states were confirmed with those from the study of 1994Zi01.

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0	5/2-	1798.39 <i>23</i>	9/2-	3263.0 ^a 5	15/2-	4774.7 <mark>b</mark> 6	$21/2^{-}$
147.7 3	3/2-	2062.2 ^b 4	9/2-	3290.8 [@] 3	$17/2^{-}$	5074.2 ^{&} 5	$(23/2^{-})$
924.62 16	$7/2^{-}$	2111.02 ^{&} 23	$11/2^{-}$	3738.8 <mark>b</mark> 5	$17/2^{-}$	5359.0 ^a 7	$(23/2^{-})$
1245.6 [#] 3	$5/2^{-}$	2417.0 ^{<i>a</i>} 5	$11/2^{-}$	3917.2 ^{&} 3	19/2-	5371.8 [@] 4	$25/2^{-}$
1394.87 17	9/2-	2470.24 [@] 21	$13/2^{-}$	4233.0 ^{<i>a</i>} 5	19/2-	6673.2 [@] 5	29/2-
1729.1 ^a 4	$7/2^{-}$	2820.5 ^b 5	$13/2^{-}$	4234.2 [@] 4	$21/2^{-}$	8115.2 [@] 6	33/2-
1759.5 4	7/2-	2921.23 ^{&} 24	$15/2^{-}$	4372.4 4	$21/2^{-}$	9685.2 [@] 7	$(37/2^{-})$

[†] From a least-squares fit to $E\gamma$ data.

[‡] As proposed by 1999Fo02 based on earlier assignments for low-lying levels and DCO ratios and band associations for higher levels.

[#] Note that the most intense 1095γ ray from a closely spaced level at 1242.6 level is not reported or discussed by 1999Fo02.

[@] Band(A): $13/2^{-}$ band, $\alpha = +1/2$.

[&] Band(a): $11/2^{-}$ band, $\alpha = -1/2$.

^{*a*} Band(B): Possible $\pi/2[703]$ band, $\alpha = -1/2$. This configuration originates from the $f_{7/2}$ orbital.

^b Band(b): Possible $\pi 7/2[703]$ band, $\alpha = +1/2$.

 $\gamma(^{71}As)$

DCO ratios correspond to $\Delta J=2$, quadrupole gated spectra, unless otherwise stated. Expected DCO=1.0 for $\Delta J=2$, quadrupole and 0.5 for $\Delta J=1$, dipole. When gate is on $\Delta J=1$, dipole transition, expected DCO=1.0 for $\Delta J=1$, dipole and 2.0 for $\Delta J=2$, quadrupole.

E_{γ}^{\dagger}	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments	
147.7 4	2.8 4	147.7	3/2-	0.0	5/2-	D	DCO(D)=0.83 7	
302.7 4	4.9 10	2062.2	9/2-	1759.5	$7/2^{-}$	D	DCO(D)=1.06 11	
312.7 10	1.2 4	2111.02	$11/2^{-}$	1798.39	9/2-	D	DCO(Q)=0.52 8	
333.2 <i>3</i>	7.9 15	2062.2	9/2-	1729.1	$7/2^{-}$	D	DCO(D)=1.02 6	
354.8 2	14.1 20	2417.0	$11/2^{-}$	2062.2	9/2-	D	DCO(D)=1.18 9	
369.6 4	3.0 6	3290.8	$17/2^{-}$	2921.23	$15/2^{-}$	D	DCO(Q)=0.40 12	
403.5 2	14.5 25	2820.5	$13/2^{-}$	2417.0	$11/2^{-}$	D	DCO(D)=1.09 6	
442.6 2	15.4 25	3263.0	$15/2^{-}$	2820.5	$13/2^{-}$	D	DCO(D)=0.90 6	
451.0 2	10.9 20	2921.23	$15/2^{-}$	2470.24	$13/2^{-}$	D	DCO(Q)=0.59 9	
455.2 2	13 <i>3</i>	4372.4	$21/2^{-}$	3917.2	19/2-	D	DCO(Q)=0.43 6	
470.2 4	3.0 5	1394.87	9/2-	924.62	$7/2^{-}$			
475.9 2	10.2 15	3738.8	$17/2^{-}$	3263.0	$15/2^{-}$	D	DCO(D)=0.93 9	
483.6 10	1.5 3	1729.1	$7/2^{-}$	1245.6	$5/2^{-}$	D	DCO(D)=0.70 10	
494.2 <i>3</i>	8.1 10	4233.0	19/2-	3738.8	$17/2^{-}$	D	DCO(D)=0.94 9	
514.0 4	2.6 7	1759.5	7/2-	1245.6	5/2-			
541.6 4	3.1 6	4774.7	$21/2^{-}$	4233.0	$19/2^{-}$	D	DCO(D)=1.03 24	
552.6 4	3.5 8	1798.39	9/2-	1245.6	5/2-	(Q)	DCO(Q)=0.75 7	
584.6 10	0.6 2	5359.0	$(23/2^{-})$	4774.7	$21/2^{-}$			
626.4 3	8.6 10	3917.2	19/2-	3290.8	$17/2^{-}$	D	DCO(Q)=0.48 4	
Continued on next page (footnotes at end of table)								

⁵⁸Ni(¹⁶O,3pγ) **1999Fo02** (continued)

/(Ab) (continued)									
E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.‡		Comments	
671.8 2	15 <i>3</i>	2470.24	$13/2^{-}$	1798.39	9/2-	0	DCO(O)=0.99 7		
716.1 4	3.0 10	2111.02	$11/2^{-}$	1394.87	$9/2^{-}$				
758.1 4	4.0 8	2820.5	$13/2^{-}$	2062.2	9/2-	0	DCO(D)=1.6 3		
777.0 4	3.3 9	924.62	$7/2^{-}$	147.7	$3/2^{-}$				
810.2 2	11.9 25	2921.23	$15/2^{-}$	2111.02	$11/2^{-}$	0	DCO(O)=0.89 10		
820.6 2	47 6	3290.8	$17/2^{-}$	2470.24	$13/2^{-}$	ò	DCO(Q)=1.02 8		
846.0 <i>3</i>	5.8 10	3263.0	$15/2^{-}$	2417.0	$11/2^{-}$				
873.8 <i>3</i>	7.5 10	1798.39	$9/2^{-}$	924.62	$7/2^{-}$				
918.1 4	4.2 5	3738.8	$17/2^{-}$	2820.5	$13/2^{-}$	Q	DCO(D)=2.6 5		
924.6 2	27 5	924.62	$7/2^{-}$	0.0	$5/2^{-}$	Ď	DCO(Q)=0.48 5		
943.4 2	22 4	4234.2	$21/2^{-}$	3290.8	$17/2^{-}$	Q	DCO(Q)=1.10 7		
969.9 <i>3</i>	8.0 10	4233.0	$19/2^{-}$	3263.0	$15/2^{-}$	Q	DCO(D)=1.8 3		
996.0 2	35 7	3917.2	$19/2^{-}$	2921.23	$15/2^{-}$	Q	DCO(Q)=0.85 10		
1035.9 4	2.6 5	4774.7	$21/2^{-}$	3738.8	$17/2^{-}$				
1075.4 2	39 5	2470.24	$13/2^{-}$	1394.87	9/2-	Q	DCO(Q)=1.03 6		
1097.8 <i>3</i>	7.6 20	1245.6	$5/2^{-}$	147.7	$3/2^{-}$	(D)	DCO(D)=1.45 16		
1126.0 4	2.8 6	5359.0	$(23/2^{-})$	4233.0	$19/2^{-}$				
1137.5 2	18.7 20	5371.8	$25/2^{-}$	4234.2	$21/2^{-}$	Q	DCO(Q)=1.01 7		
1156.9 <i>3</i>	8.6 15	5074.2	$(23/2^{-})$	3917.2	19/2-				
1186.4 <i>3</i>	8.2 20	2111.02	$11/2^{-}$	924.62	$7/2^{-}$	Q	DCO(Q)=0.90 13		
1301.4 2	14 <i>3</i>	6673.2	29/2-	5371.8	$25/2^{-}$	Q	DCO(Q)=1.03 13		
1394.9 2	32 4	1394.87	9/2-	0.0	$5/2^{-}$	Q	DCO(Q)=1.03 7		
1442.0 <i>3</i>	6.3 15	8115.2	33/2-	6673.2	$29/2^{-}$	Q	DCO(Q)=1.37 18		
1570.0 4	3.0 7	9685.2	$(37/2^{-})$	8115.2	$33/2^{-}$				
1581.5 <i>10</i>	1.4 4	1729.1	7/2-	147.7	3/2-				
1729.0 4	4.3 15	1729.1	7/2-	0.0	5/2-	D+Q	DCO(D)=2.1 4		
759.0 10	<1.7	1759.5	$7/2^{-}$	0.0	$5/2^{-}$				

$\gamma(^{71}\text{As})$ (continued)

[†] Uncertainties assigned by the evaluators are: 0.2 keV for $I\gamma>10$, 0.3 keV for $I\gamma=5$ to 10, 0.4 keV for $I\gamma=2$ to 5 and 1.0 keV for $I\gamma\leq2$, based on a general statement by 1999Fo02 that the uncertainties are 0.2 to 0.4 keV for strong transitions and 0.8 to 1.0 keV for the weakest transitions.

[‡] Assigned by the evaluators based on DCO values. The mult=Q indicates $\Delta J=2$, quadrupole (most likely E2) and mult=D or D+Q indicates $\Delta J=1$ transition. The $\Delta J=0$ transitions are not ruled out by the DCO ratios but from band structures and population of states in heavy-ion reactions, such transitions are less common and none are evident in this study.

⁷¹₃₃As₃₈

⁵⁸Ni(¹⁶O,3pγ) 1999Fo02

