Adopted Levels, Gammas

		History											
		Туре	Author		Citation		Literature Cutoff Date						
		Full Evalua	tion G. Gürdal, E. A. N	Accutchan	NDS 136, 1 (20	016)	1-Jul-2016						
$Q(\beta^{-}) = -654.6 L$ S(2n) = 15700.5 L α : Additional in	16; S(: 21; S(nforma	n)=9218.4 <i>21</i> ; (2p)=20679 <i>4</i> (2 ntion 1.	$S(p)=11117.5 24; Q(\alpha)=-2012Wa38).$	-5983.3 24	2012Wa38								
				⁷⁰ Zn L	evels								
	Cross Reference (XREF) Flags												
		A B C D E F	⁷⁰ Cu β ⁻ decay (44.5 s) ⁷⁰ Cu β ⁻ decay (33 s) ⁷⁰ Cu β ⁻ decay (6.6 s) ⁷⁰ Ga ε decay ⁶⁸ Zn(t,p) ⁷⁰ Zn(p,p'),(pol p,p')	$ \begin{array}{ccc} {\bf G} & {}^{70}{\bf Zr} \\ {\bf H} & {}^{70}{\bf Zr} \\ {\bf I} & {}^{70}{\bf Zr} \\ {\bf J} & {}^{70}{\bf Zr} \\ {\bf K} & {\bf Cou} \\ {\bf L} & {}^{71}{\bf Gr} \end{array} $	$\begin{array}{l} h(p,p'\gamma) \\ h(\alpha,\alpha') \\ h(n,n'\gamma) \\ h(e,e') \\ lomb excitation \\ a(d,^{3}He) \end{array}$	M N O P Q	208 Pb(64 Ni,X γ) 238 U(76 Ge,X γ) 70 Zn(d,d') 70 Zn(3 He, 3 He') 73 Ge(n, α)						
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF			Corr	nments						
0.0‡	0+	≥3.8×10 ¹⁸ y	ABCDEFGHIJKLMNOPQ	$ \begin{array}{c} \% 2\beta^{-} = ? \\ T_{1/2}: \text{ from} \\ T_{1/2} \ge 3 \\ 2\nu 2\beta^{-} \\ 2010B \\ 2011B \\ 2\nu 2\beta^{-} \\ \ge 1.3 \times 3 \end{array} $	m 2011Be39 for 2 .2×10 ¹⁹ for $0\nu 2\beta$ decay and $\geq 1.8\times$ eZO, 2009Be27, e e39), $\geq 2.2\times10^{17}$ (decay and $\geq 0.7\times$ 10^{16} (2003Ki08),	$2\nu 2\beta^{-}$ decay 10^{19} fo earlier 1 (2007B 10^{18} fo >4.8×1	decay; also determined y. Others: $\geq 2.3 \times 10^{17}$ for or $0\nu 2\beta^{-}$ decay (2010Be41, results by same group as 115, 2006Zu02), $\geq 1.3 \times 10^{16}$ for or $0\nu 2\beta^{-}$ decay (2005Da47), 10^{14} y (1952Fr23).						
884.92 [∓] 8	2+	3.65 ps 21	ABC EFGHIJKLMNOPQ	Q=-0.23 β_2 =0.20 μ : from t +0.76 (1977) Excitat T _{1/2} : wei 35 from from R in (e,e' J ^{π} : L(t,p) Q: from del β_2 : from	3 22 (1976Ne06); (1993Mo15) ransient field tech 8 (2002Ke02), 0.8 HaZW), all from the tion, and 0.60 14 (ighted average of m RDDS, both in RDDS in 238 U(76 C '), 3.3 ps 3 from H ==2. (e,e'); extracted us dependent. (pol p.p'), Other:	; μ =+0 inique i 82 20 (ransien (1979F 3.67 p: Coulor Ge,X γ), B(E2)= sing an	.76 4 (2009Mu06) in Coulomb Excitation. Others: 1979BrZP), 0.60 18 it field technique in Coulomb 206) from IMPAC. s 21 from DSAM and 3.60 ps mb Excitation. Others: 3.7 ps 12 , 2.5 ps 2 from B(E2)=0.205 19 :0.160 14 in Coulomb Excitation. aharmonic-vibrator model and is from (α . α').						
1070.76 9	0^{+}	3.90 ns 20	CEGIKL	$T_{1/2}$: from J^{π} : L(t,p)	m $(p,p'\gamma)$.	0.220							
1554 [@] 5 1759.16 <i>10</i>	2+	1.32 ps <i>21</i>	F H BC EF HIJKL	μ =+0.94 XREF: E J ^{π} : L(p,p excitat T _{1/2} : from B(E2)= (n,n' γ) μ : from t +0.84	44 (2009Mu06) (1767)F(1764). ($'$)=2, L(d, ³ He)=10 ion. m DSAM in Coul =0.0050 <i>13</i> from (ransient field tech <i>38</i> from reanalysis	(+3), s lomb E (e,e'), (nnique i s of tra	trong population in Coulomb Excitation. Others: 1.4 ps 4 from 0.24 ps $+24-12$ from DSAM in in Coulomb excitation. Other: ansient field data (2010Mo14).						
1786.75 [‡] 10	4+	2.9 ps 8	AB EF I KLMN	μ=+1.48	56 (2009Mu06)								

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁷⁰Zn Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
				 J^π: L(t,p)=4. T_{1/2}: weighted average of 2.0 ps +9-11 from RDDS in ²³⁸U(⁷⁶Ge,Xγ) and 3.4 ps 8 from RDDS in Coulomb Excitation. Other: 1.32 ps 14 from DSAM in Coulomb Excitation (2009Mu06). μ: from transient field technique in Coulomb excitation. Other: +0.84 52 from reanalysis of transient field data
1957.28 <i>12</i>	2+		C EF HI KL	(2010Mo14). 0 XREF: H(1945).
0140 (4.17	-			J^{π} : L(t,p)=2.
2140.64 17	0.		CEF I L	J^{π} : L(t,p)=0.
2375 [@] 5	$(2,1,3)^+$		FH	Q XREF: Q(2300?).
2538.31 11	2+	0.21 ps +28-8	B F I KL	J [*] : L(p,p')=2. $T_{1/2}$: from DSAM in (n,n' γ). J ^{π} : from L(d, ³ He)=1+3 and J=2 from $\gamma(\theta)$ in (n,n' γ). 2004Va08 in ⁷⁰ Cu β^- decay (33 s) assign (3 ⁺) to this level, however, this is unlikely given its direct population in Coulomb excitation. L(p,p')=(0) is discrepant.
2665 [@] 5 2693.40 <i>11</i>	2+ 4+	0.28 ps +35-14	EF L AB EF I K	J^{π} : L(t,p)=2. T _{1/2} : from DSAM in (n,n' γ). I^{π} . L(n,n')=4
2805 [@] 5 2859.49 11	3-	0.201 ps 14	F B EF HI K	$\beta_3 = 0.20$ (1993Mo15) J^{π} : L(t,p)=3; analyzing power consistent with 3 ⁻ in (pol p,p').
2895.10 [‡] <i>13</i> 2949.67 <i>18</i>	(6 ⁺) 1 ⁺ ,2 ⁺ ,3 ⁺	0.042 ps +21-14	A KMN IKL	$F_{1/2}$: from DSAM in Coulomb Excitation. J^{π} : 1108 γ to 4 ⁺ , band assignment. XREF: L(?). J^{π} : M1+E2 2064 γ to 2 ⁺ . $T_{1/2}$: from DSAM in (n,n' γ).
2954 [@] 5			F	E(level): possibly the same as 2949.2-keV level, although $L(n, p') = (1)$ is discrepant with Adopted I^{π}
2978.26 23	4+		B EF K	J^{π} : L(t,p)=4.
3022 [#] 10 3038.15 11	5-	1.04 ps 7	L AB EF HIK MN	E(level): possibly the same as 3037.6-keV level, although $L(d, {}^{3}He)=(1)$ is discrepant with Adopted J^{π} . J^{π} : $L(p,p')=5$, $L(t,p)=(5)$, population in Coulomb Excitation makes $J^{\pi}=4^{-}$ or 6^{-} unlikely. $J^{\pi}=4^{-}$ proposed in $(n,n'\gamma)$ based on population strength and $J^{\pi}=4^{+}$ proposed in $208 \text{ pt} \cdot 642 \text{ streng}$.
2222 00 10				T _{1/2} : from DSAM in Coulomb Excitation. Configuration= $((\pi \ 2p_{3/2})^2(\nu \ 2p_{1/2})^{-1}(\nu \ 1g_{9/2}))$ (2004Va08).
3222.08 <i>10</i> 3235 <i>5</i>	$1 3^+, 4^+, 5^+$		I EF	J^{α} : from $\gamma(\theta)$ in $(n,n'\gamma)$. E(level): from (p,p') .
3246.71 11	(3-,4+)		В	J ^{π} : from L(p,p')=4. J ^{π} : strong β feeding from J ^{π} =3 ⁻ parent, 209 γ to 5 ⁻ , 708 γ to 2 ⁺ . E(level): possibily the same as the 3235-keV level.
3328 [@] 5	(0 ⁺)		EF	J^{π} : L(t,p)=(0).
3342.0 <i>3</i>	3^{-}		A E H	$J^{\pi}: L(\alpha, \alpha') = 3.$
3419 3	(3)		EF	$J^{*}: L(t,p)=(3), L(p,p^{*})=3.$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁷⁰Zn Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
3464 [@] 5	4+	EF H	J^{π} : L(t,p)=4.
3476.68 14		A M	
3506 [@] 5 3598.98 <i>14</i>	5-	EFH L A M	J^{π} : L(t,p)=5, L(p,p')=5; L=1 in (d, ³ He) is discrepant.
3634.99 22	2+	C EF L	J^{π} : L(t,p)=2.
3680 [@] 5	0^{+}	EF H L	J^{π} : L(t,p)=0; L=1(+3) in (d, ³ He) is discrepant.
3710.7 6	2+	EF I	J^{π} : L(t,p)=2.
3750 [@] 5	$(0^{-}, 1^{-}, 2^{-})$	EF	J^{π} : L(p,p')=(1).
3755.4 [‡] 10	(8+)	MN	J^{π} : 860 γ to (6 ⁺), band assignment.
3788.16 22		A M	
3813 [@] 5		EF	E(level): possible doublet; $L(p,p')=(1)+4$.
3844 [@] 5	1-	EF h	J^{π} : L(t,p)=1.
3848.4 6	$(5,6^+)$	Α	J^{π} : direct β^{-} feeding from $J^{\pi}=6^{-}$ parent, 2062 γ to 4 ⁺ .
3888 [@] 5	$(4)^{+}$	EF h	J^{π} : L(p,p')=4.
3904.0 4	(5,6 ⁺)	Α	J^{π} : direct β^{-} feeding from $J^{\pi}=6^{-}$ parent, 2117 γ to 4 ⁺ .
3914 <i>10</i>		E	
3948 [@] 5	1-	EF	J^{π} : L(t,p)=1.
3999 10	2^{+}	E H	$J^{\pi}: L(t,p)=2.$
4001 46 15			E(level): from (t,p) .
4001.46 15	(5,0,7) 2^+ 4^+ 5^+	A	J [*] : direct β feeding from J [*] =6 parent, 963 γ to 5.
4010 10	5,4,5	Lſ	I^{π} : I (n n')=4
4061.40 16	$(5,6,7^{-})$	Α	J^{π} : direct β^{-} feeding from $J^{\pi}=6^{-}$ parent, 1023 γ to 5 ⁻ .
4066 [@] 10	4+	EF	$J^{\pi}: L(t,p)=4.$
4136 [@] 10	$2^{+}.1^{+}.3^{+}$	EF	$I^{\pi}: L(n p') = 2$
4146.1 3	- ,1 ,0	I	J^{π} : proposed as 3^{-} in $(n,n'\gamma)$ based on population strength.
4172 [@] 10	5-	FH	XREF: H(4200).
			J^{π} : L(p,p')=5, L(α, α')=5.
4264.5 7	$(5, 6, 7^{-})$	Α	J ^{π} : direct β^{-} feeding from $J^{\pi}=6^{-}$ parent, 1226 γ to 5 ⁻ .
4291 10	2^{+}	EF	E(level): weighted average of 4297 10 from (t,p) and 4284 10 from (p,p') .
1200 00 10			J^{π} : L(t,p)=L(p,p')=2.
4308.99 18	(5,6,7)	A F	J^{*} : direct β feeding from $J^{*}=6$ parent, $12/1\gamma$ to 5.
4307 10	$3^{+},4^{+},5^{+}$	r F	J^{*} . L(p,p) = 4. I^{π} : L(p,p') = 4
4464.77 17	$(5.6.7^{-})$	A	I^{π} : direct β^{-} feeding from $I^{\pi}=6^{-}$ parent, 1426.5 γ to 5 ⁻ .
4514.27 23	$(5,6,7^{-})$	A	J^{π} : direct β^{-} feeding from $J^{\pi}=6^{-}$ parent, 1476 γ to 5 ⁻ .
4558.2 <i>3</i>	(5,6 ⁺)	A	J^{π} : direct β^{-} feeding from $J^{\pi}=6^{-}$ parent, 2771 γ to 4 ⁺ .
4588.8 <i>3</i>	$(5, 6, 7^{-})$	Α	J^{π} : direct β^{-} feeding from $J^{\pi}=6^{-}$ parent, 1551 γ to 5 ⁻ .
4710.1 5	(5,6,7)	Α	J^{π} : direct β^{-} feeding from $J^{\pi} = 6^{-}$ parent.
4/91.7 10	(5,6,7)	A	J [*] : direct β feeding from $J^{\mu}=6^{-}$ parent.
4849.2 3	$(5,0^{-})$	A	J : direct p teeding from $J = 0$ parent, 3062γ to 4.
4935.9+ 14	(10^{+})	MN	J [*] : 118U.S γ to (δ^{+}), band assignment.
3001.3 J	(3,0,7)	A	J : unect p recuring from $J = 0$ parent.
6116.2* 17	(12')	MN	J^{*} : 1180.3 γ to (10 ⁺), band assignment.

 † From a least-squares fit to E γ , by evaluators, for levels connected by γ rays. For levels from transfer reactions, corresponding [‡] Band(A): yrast band.
[#] From (d,³He).
[@] From (p,p'),(pol p,p').

Adopted Levels, Gammas (continued)									
							$\gamma(^{70}\text{Zn})$		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f = J_j^r$	Mult. [‡]	δ#	α	$I_{(\gamma+ce)}$	Comments
884.92	2+	884.88 9	100	0.0 0-	+ E2		3.97×10 ⁻⁴		$\alpha(K)=0.000356 5; \alpha(L)=3.58\times10^{-5} 5; \alpha(M)=5.12\times10^{-6}$ $\delta; \alpha(N)=2.04\times10^{-7} 3$ B(E2)(W.u.)=16.7 10 Mult : from Coulomb Excitation from 0 ⁺ ground state
1070.76	0+	185.85 [@] 3	100	884.92 2	+ [E2]		0.0634		$\alpha(K) = 0.0563 \ 8; \ \alpha(L) = 0.00613 \ 9; \ \alpha(M) = 0.000871 \ 13; \ \alpha(N) = 3.07 \times 10^{-5} \ 5$ B(E2)(W.u.) = 37.3 19
		1067		0.0 0	+ E0			< 0.3	E _{γ} : other: 184.4.2 in (n, n γ). I _($\gamma+ce$) : for 100 transitions of 185.9 γ as measured in (p,p' γ). Mult.: from internal conversion data in (p,p' γ). E : from (p, p' γ)
1759.16	2+	874.33 [@] 8	100 [@] 9	884.92 2	+ M1+E2	2 +0.75 15	3.58×10 ⁻⁴ 9		
		1759.6 [@] 2	68 [@] 7	0.0 0	+ [E2]		2.86×10 ⁻⁴		$\alpha(K)=7.92\times10^{-5} 11; \ \alpha(L)=7.86\times10^{-6} 11; \ \alpha(M)=1.127\times10^{-6} 16; \ \alpha(N)=4.56\times10^{-8} 7$ B(E2)(W,u,)=0.60 12
1786.75	4+	901.7 <i>1</i>	100	884.92 2	⊦ [E2]		3.78×10 ⁻⁴		α (K)=0.000339 5; α (L)=3.41×10 ⁻⁵ 5; α (M)=4.88×10 ⁻⁶ 7; α (N)=1.95×10 ⁻⁷ 3 B(E2)(W.u.)=19 6
1957.28	2^{+}	1072.2 [@] 1	100	884.92 2	F				
2140.64	0^{+}	1255.6 ^{<i>a</i>} 2	100	884.92 2	+		<pre>< 10 1</pre>		
2538.31	2+	751.54 2	≈18 ^u	1786.75 4	F [E2]		6.06×10 ⁻⁴		$\alpha(K)=0.000543 \ 8; \ \alpha(L)=5.49\times10^{-3} \ 8; \ \alpha(M)=7.86\times10^{-6} \ 11; \ \alpha(N)=3.11\times10^{-7} \ 5 \ B(E2)(W.u.)=73 \ 44$
		779.1 [@] 2	40 [@] 4	1759.16 2	F				I_{γ} : other: 58 in $(n,n'\gamma)$.
		1653.9 [@] 2	100 [@] 7	884.92 2	+ M1+E2	2 -1.5 3	2.39×10 ⁻⁴ 5		$ α(K)=8.78\times10^{-5} 14; α(L)=8.72\times10^{-6} 14; α(M)=1.250\times10^{-6} 19; α(N)=5.06\times10^{-8} 8 B(E2)(W.u.)=4.9 +49-21; B(M1)(W.u.)=0.0040 +40-20 Mult.: D+Q from γ(θ) in (n,n'γ), Δπ=no from level scheme. $
		2537.9 ^a 3	20 ^{<i>a</i>}	0.0 0	+ [E2]		6.18×10^{-4}		$\alpha(K)=4.09\times10^{-5} 6; \ \alpha(L)=4.05\times10^{-6} 6; \ \alpha(M)=5.81\times10^{-7}$ 9; $\alpha(N)=2.36\times10^{-8} 4$ B(E2)(Wu)=0.17 10
2693.40	4+	735.5 ^{<i>a</i>} 2	11 ^a	1957.28 2	⊦ [E2]		6.43×10 ⁻⁴		$\alpha(K)=0.000576 \ 8; \ \alpha(L)=5.82\times10^{-5} \ 9; \ \alpha(M)=8.33\times10^{-6}$ 12; $\alpha(N)=3.30\times10^{-7} \ 5$ B(F2)(Wu)=26 + 26 - 14
		906.5 1	92 12	1786.75 4	F				5(52)(ma)=20 +20 +1

4

 $^{70}_{30}\mathrm{Zn}_{40}$ -4

					Adopted	Levels, Ga	ammas (conti	nued)
						$\gamma(^{70}\text{Zn})$ (c	continued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	$\delta^{\#}$	α	Comments
2693.40	4+	934.9 ^a 3	30 ^{<i>a</i>}	1759.16 2+	[E2]		3.46×10 ⁻⁴	$\alpha(K)=0.000310 5; \alpha(L)=3.12\times10^{-5} 5; \alpha(M)=4.46\times10^{-6} 7; \alpha(N)=1.782\times10^{-7} 25$
		1809.2 ^{<i>a</i>} 3	100 ^{<i>a</i>} 16	884.92 2+	[E2]		3.04×10 ⁻⁴	B(E2)(W.u.)=21 +21-12 $\alpha(K)=7.51\times10^{-5}$ 11; $\alpha(L)=7.46\times10^{-6}$ 11; $\alpha(M)=1.069\times10^{-6}$ 15; $\alpha(N)=4.32\times10^{-8}$ 6 B(E2)(W.u.)=2.6 +26-15
2859.49	3-	902		1957.28 2+				E_{γ} : observed only in Coulomb Excitation.
		1072.2 ^{&} 1	100 ^{&} 13	1786.75 4+	[E1]		1.12×10 ⁻⁴	α (K)=0.0001001 <i>14</i> ; α (L)=9.94×10 ⁻⁶ <i>14</i> ; α (M)=1.423×10 ⁻⁶ <i>20</i> ; α (N)=5.74×10 ⁻⁸ 8 B(E1)(W.u.)=0.00068 <i>11</i>
		1100.5 ^{&} 2	45 ^{&} 5	1759.16 2+	[E1]		1.15×10 ⁻⁴	$\alpha(K)=9.54\times10^{-5}$ 14; $\alpha(L)=9.47\times10^{-6}$ 14; $\alpha(M)=1.356\times10^{-6}$ 19; $\alpha(N)=5.47\times10^{-8}$ 8 B(E1)(W,u,)=0.00028 5
		1975.0 ^{&} 4	93 ^{&} 7	884.92 2+	[E1]		6.56×10 ⁻⁴	$\alpha(K)=3.61\times10^{-5} 5; \ \alpha(L)=3.57\times10^{-6} 5; \ \alpha(M)=5.11\times10^{-7} 8; \\ \alpha(N)=2.07\times10^{-8} 3 \\ B(E1)(Wu)=0.000100 13$
2895.10	(6 ⁺)	1108.4 <i>1</i>	100	1786.75 4+				
2949.67	$1^+, 2^+, 3^+$	1191.9 ^a 3	72 ^a	1759.16 2+				
		2064.1 ^{<i>a</i>} 2	100 ^{<i>a</i>}	884.92 2+	M1+E2	+3.8 5	4.04×10 ⁻⁴	$\begin{aligned} \alpha(\text{K}) &= 5.87 \times 10^{-5} \ 9; \ \alpha(\text{L}) &= 5.82 \times 10^{-6} \ 9; \ \alpha(\text{M}) &= 8.34 \times 10^{-7} \ 12; \\ \alpha(\text{N}) &= 3.38 \times 10^{-8} \ 5 \\ \text{B}(\text{E2})(\text{W.u.}) &= 11 \ +4-6; \ \text{B}(\text{M1})(\text{W.u.}) &= 0.0022 \ +10-13 \\ \text{Mult.: D+Q from } \gamma(\theta) \text{ in } (\text{n},\text{n}'\gamma), \ \text{E1+M2 excluded by comparison} \\ \text{to RUL.} \end{aligned}$
2978.26	4+	1191.5 <mark>&</mark> 2	100	1786.75 4+				
3038.15	5-	1251.7 <i>1</i>	100	1786.75 4+	[E1]		1.68×10^{-4}	$\alpha(K)=7.56 \times 10^{-5} \ 11; \ \alpha(L)=7.49 \times 10^{-6} \ 11; \ \alpha(M)=1.073 \times 10^{-6} \ 15; \ \alpha(N)=4.34 \times 10^{-8} \ 6$ B(E1)(Wu)=0.000195 14
3222.08	1	2155.0 ^{ac} 1	≈33 ^{<i>a</i>}	1070.76 0+				E_{γ} : level energy difference gives E_{γ} =2151.3, transition not included in least-squares fitting.
		3222.0 ^{<i>a</i>} 1	$\approx 100^{a}$	$0.0 0^+$				
3246.71	$(3^{-},4^{+})$	208.75 ^{&} 7	55 <mark>&</mark> 4	3038.15 5-				
		387.10 ^{&} 5	54 ^{&} 4	2859.49 3-				
		553.2 <mark>&</mark> 1	28 ^{&} 4	2693.40 4+				
		708.42 ^{&} 7	100 ^{&} 5	2538.31 2+				
		1460.4 <mark>&</mark> 2	20 ^{&} 4	1786.75 4+				
3342.0	3-	1555.2 3	100	1786.75 4+				
3476.68		438.2 2	22.2 10	$3038.15 5^{-}$				
		1690.3 2	100.0 16	2093.40 4 1786.75 4 ⁺				
3598.98		560.82 8	100.010	3038.15 5-				

S

L

$\gamma(^{70}$ Zn) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$
3634.99	2+	1875.8 [@] 2	100	1759.16 2+	4464.77	(5,6,7 ⁻)	988.0 <i>3</i>	28 <i>3</i>	3476.68
3710.7	2+	1951.5 ^a 6	100	1759.16 2+			1426.5 2	100 4	3038.15 5-
3755.4	(8^{+})	860.3 ^b	100	2895.10 (6+)			1569.8 2	32 <i>3</i>	2895.10 (6 ⁺)
3788.16		750.0 2	63 4	3038.15 5-	4514.27	(5,6,7 ⁻)	1476.1 2	100	3038.15 5-
		893.1 6	100 5	2895.10 (6 ⁺)	4558.2	$(5,6^{+})$	1520.1 <i>3</i>	67 5	3038.15 5-
3848.4	$(5,6^{+})$	2061.6 6	100	1786.75 4+			2771.2 6	100 4	1786.75 4+
3904.0	$(5,6^{+})$	2117.2 4	100	1786.75 4+	4588.8	$(5, 6, 7^{-})$	1550.6 <i>3</i>	100	3038.15 5-
4001.46	$(5, 6, 7^{-})$	963.3 1	100	3038.15 5-	4710.1	(5,6,7)	1815.0 5	100	2895.10 (6 ⁺)
4061.40	$(5,6,7^{-})$	584.7 <i>1</i>	100 8	3476.68	4791.7	(5,6,7)	1315 <i>I</i>	100	3476.68
		1023.3 2	70 7	3038.15 5-	4849.2	$(5,6^{+})$	1954.2 <i>3</i>	100 4	2895.10 (6 ⁺)
4146.1		1107.9 ^a 3	100	3038.15 5-			3062.1 6	85 4	1786.75 4+
4264.5	$(5, 6, 7^{-})$	1226.3 7	100	3038.15 5-	4935.9	(10^{+})	1180.5 <mark>b</mark>	100	3755.4 (8 ⁺)
4308.99	(5,6,7 ⁻)	1270.8 2	100 5	3038.15 5-	5061.3	(5,6,7)	2166.2 5	100	2895.10 (6+)
		1413.9 2	43 4	2895.10 (6 ⁺)	6116.2	(12 ⁺)	1180.3 <mark>b</mark>	100	4935.9 (10 ⁺)

 † From $^{70}\mathrm{Cu}\,\beta^-$ decay (44.5 s), except where noted.

[‡] From $\gamma(\theta)$ in $(n,n'\gamma)$, except when [‡] From $\gamma(\theta)$ in $(n,n'\gamma)$, except where noted. [#] From $\gamma(\theta)$ in $(n,n'\gamma)$. [@] From ⁷⁰Cu β^- decay (6.6 s). [&] From ⁷⁰Cu β^- decay (33 s).

6

^{*a*} From $(n,n'\gamma)$. ^{*b*} From ²⁰⁸Pb(⁶⁴Ni,X γ).

^c Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{70}_{30}$ Zn₄₀

 $^{70}_{30}$ Zn₄₀

Adopted Levels, Gammas

 $^{70}_{30}$ Zn₄₀