		The second se		Histo	ory								
		Type	a a. 1	Author	Citation	Literature Cutoff Date							
		Full Evaluation	G. Gürd	al, E. A. Mccutchan	NDS 136, 1 (2016)	1-Jul-2016							
$Q(\beta^{-}) = -10504$ S(2n)=23883.1	15; S(r 17, S(2	n)=13566.5 22; S(2p)=9529.0 25 (20	p)=6.11×10)12Wa38).	$0^3 3; Q(\alpha) = -2748 3$	2012Wa38								
				⁷⁰ Se L	evels								
				Cross Reference	(XREF) Flags								
		A B C D	70 Br ε de 70 Br ε de 9 Be(70 Se 40 Ca(40 C	ecay (79.1 ms) E ecay (2.2 s) F $x,^{70}$ Se' γ) G $x_3,2\alpha 2p\gamma$)	40 Ca(36 Ar, $\alpha 2$ p γ), 58 Di(14 N,pn γ), 60 Ni(Coulomb excitation	$Ni(^{14}N,pn\gamma)$ $^{12}C,2n\gamma)$							
E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\ddagger}$	XREF		Com	nents							
0.0 ^{&}	0^+	41.1 min <i>3</i>	ABCDEFG	$\% \epsilon + \% \beta^+ = 100$ T _{1/2} : from 1974Te0	4.								
944.52 ^{&} 5	2+	2.23 ps 14	BCDEFG	Q=+ (2007Hu03) T _{1/2} : from weighted (2008Lj01) using recoil distance Do J ^{π} : from 944.51 γ E2 Q: from nuclear reco	l average of 2.27 ps 26 recoil distance Dopple oppler shift method (19 2 to 0 ⁺ . rientation effect in Cou	5 (2014Ni09) and 2.22 ps <i>14</i> r shift method. Others: 1.0 ps 2 from 86He17) and 1.1 ps <i>3</i> (1975GuYV). slomb excitation (2007Hu03).							
1599.9 ^a 3	2+	3.3 [#] ps 9	BCDEF	$T_{1/2}$: Other: < 5.2 ps effective half-life from recoil distance Doppler shift method (2014Ni09). I^{π} : from 1600 1 \times F2 to 0 ⁺									
2010.3 3	(0+)		EF	J^{π} : (0 ⁺) from 1065.8 γ Q to 2 ⁺ in 1981Ah03. Authors tentatively assigned (0 ⁺) for this level based on isotropic angular distribution. Other: (0 ⁺) in 1980Wa19, based on the isotropic angular distribution.									
2038.8 ^{&} 5	4+	0.97 ps 7	BCDEF	 T_{1/2}: Others: < 3.3 ps, effective half-life from recoil distance Doppler shift method (2014Ni09) and 1.0 ps (1986He17) using recoil distance Doppler shift method deduced from singles data and 2.3 ps 6 (1975GuYV). I^π: from 1094 4y E2 to 2⁺: assumed E2 cascade member 									
2382.5 ^a 4	4+	<12 [@] ps	B DEF	J^{π} : from 782.6 γ E2	to 2^+ ; 1438.1 γ E2 to 2	2 ⁺ ; assumed E2 cascade member.							
2518.6 6	3(-)	<1.7 ps	CDEF	 T_{1/2}: upper limit from effective half-life of 1.29 ps 40 from recoil distance Doppler shift method (2014Ni09). Other: 4.2 ps 6 using recoil distance Doppler shift method (1986He17) using singles data. J^π: from 1574.1γ D to 2⁺; 868.8γ from 5⁻. 									
2553.1 10	~ 1		E	J^{π} : (4 ⁺) proposed in	40 Ca(36 Ar, $\alpha 2$ p γ), 58 N	(¹⁴ N,pnγ).							
3003.2 ^{cc} 5	6+	1.32 ps 21	B DEF	T _{1/2} : other: 2.7 ps ℓ singles (1986He1) J ^{π} : from 964.39 γ E2	5 from recoil distance 1 7). 2 to 4 ⁺ : assumed E2 ca	Doppler shift method, deduced using							
3139.6 <i>3</i> 3218.4 ^{<i>a</i>} 6 3356.4 <i>11</i>	(6+)	"	F D E	J^{π} : from 835.9 γ to 4	4 ⁺ ; assumed E2 cascad	e member.							
3387.4 5	5-	6.1 [#] ps 17	DEF	J^{π} : from 528 γ E2 fr	rom 7 ⁻ , 1348.6 γ to 4 ⁺ .								
3524.1 6 3644 <i>10</i> 3788.9 6	(5 ⁻) (6 ⁻)	<9 [®] ps	DEF B DE DEF	J^{π} : from 1005.5 γ (E J^{π} : (6 ⁺) proposed in J^{π} : J from D+Q 264 1981Ah03.	2) to $3^{(-)}$; 1485.2 γ (E 1^{40} Ca $(^{36}$ Ar, $\alpha 2$ p γ), ⁵⁸ N 1.8 γ to (5^{-}) , π from sy	1) to 4^+ . Other: (4) in 1981Ah03. i(${}^{14}N,pn\gamma$). stematics in 1980Wa19. Other: (5) in							
3915.4 ^c 5	7-	<15 [@] ps	B DEF	J^{π} : from 912.2 γ E1	to 6^+ , 691.5γ from 8^+								
4037.6 ^{&} 5	8+	<4 [@] ps	B DEF	J^{π} : from 1034.4 γ E2	2 to 6^+ ; assumed E2 ca	ascade member.							

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁷⁰Se Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\ddagger}$	XREF	Comments
4187.4 ^{<i>a</i>} 8	(8^{+})		D	J^{π} : from 969.0 γ to (6 ⁺): assumed E2 cascade member.
4324.5 9	(0)		Е	
4410.7 6			DE	
4607.0 ^b 6	8+		B DE	J^{π} : (8,9 ⁺) from R(DCO) in ⁴⁰ Ca(³⁶ Ar, $\alpha 2p\gamma$), ⁵⁸ Ni(¹⁴ N,pn γ), 1603.7 γ to 6 ⁺ .
4896.7 ^d 6	(9 ⁻)		DE	J ^{π} : from 981.3 γ to 7 ⁻ ; 468.0 γ to (8 ⁻); assumed E2 cascade member.
4955.0 12			ΒE	J^{π} : (9) from 348.0 γ to 8 ⁺ suggested in ε decay (2000Pi15) but the placement of the γ transition is uncertain.
5205.8 ^{&} 5	(10^{+})		B DE	J ^{π} : from 1168.12 γ to 8 ⁺ ; assumed E2 cascade member.
5209.1 [°] 6	(9 ⁻)		DE	J ^{π} : from 1293.6 γ to 7 ⁻ ; assumed E2 cascade member.
5308.1 ^{<i>a</i>} 10	(10^{+})		D	J^{π} : from 1120 γ to (8 ⁺); assumed E2 cascade member.
5693.2 ^b 6	(10^{+})		B DE	J ^{π} : from 1086.2 γ to 8 ⁺ ; assumed E2 cascade member.
5805.5 ^d 6	(11^{-})		DE	J ^{π} : from 908.7 γ to (9 ⁻); assumed E2 cascade member.
6017.0 <i>15</i>			ΒE	
6490.0 [°] 6	(11^{-})		DE	J ^{π} : from 1280.9 γ to (9 ⁻); assumed E2 cascade member.
6510.2 ^{<i>x</i>} 5	(12^{+})		DE	J^{π} : from 1304.45 γ to (10 ⁺); assumed E2 cascade member.
6602 ^{<i>a</i>} 5	(12^{+})		D	J^{n} : from 1294 γ to (10 ⁺); assumed E2 cascade member.
6873.0 ^{<i>a</i>} 6	(13 ⁻)		DE	J ^{π} : from 1967.5 γ to (11 ⁻); assumed E2 cascade member.
6956.9 ⁰ 6	(12^{+})		DE	J ^{π} : from 1263.6 γ to (10 ⁺); assumed E2 cascade member.
7305.8 9	(13 ⁻)	1.6 ns 2	Е	$T_{1/2}$: quoted by 1989My01; generalized centroid-shift method. J ^{π} : from 796.5 γ to 12 ⁺ ; 348.0 γ to (12 ⁺); proposed based on Weisskopf estimates in 1989My01
7554.0 ^C 7	(13^{-})		D	J^{π} : from 1064.0 γ to (11 ⁻); assumed E2 cascade member.
7940.8 ^{&} 5	(14^+)		DE	I^{π} : from 1430.6v to 12 ⁺ : assumed E2 cascade member.
$8017.7^{d}.7$	(15^{-})		D	I^{π} : from 1144 7 γ to (13 ⁻); assumed E2 cascade member
8029 ^{<i>a</i>} 5	(13^{+})		D	J^{π} : from 1427.2 γ to (12 ⁺); assumed E2 cascade member.
8316.3 ^b 6	(14^{+})		D	J^{π} : from 1359.4 γ to (12 ⁺): assumed E2 cascade member.
8349.5 13	()		E	
8771.8 ^C 8	(15 ⁻)		D	J ^{π} : from 1217.8 γ to (13 ⁻); assumed E2 cascade member.
9430.3 ^b 6	(16^{+})		D	J ^{π} : from 1114.0 γ to (14 ⁺); assumed E2 cascade member.
9496.2 ^{&} 6	(16^{+})		DE	J ^{π} : from 1555.3 γ to (14 ⁺); assumed E2 cascade member.
9624.1 ^d 7	(17^{-})		D	J ^{π} : from 1606.4 γ to (15 ⁻); assumed E2 cascade member.
10084.1 ^C 8	(17 ⁻)		D	J^{π} : from 1312.3 γ to (15 ⁻); assumed E2 cascade member.
10646.2 ^b 6	(18^{+})		D	J ^{π} : from 1215.9 γ to 16 ⁺ ; assumed E2 cascade member.
11120.5 9			D	
11268.5 11	(18^{+})		D	J^{π} : from 1772.3 γ to (16 ⁺); assumed E2 cascade member.
11532.2 ^d 10	(19 ⁻)		D	J^{π} : from 1908.1 γ to (17 ⁻); assumed E2 cascade member.
11778.5 ^{<i>c</i>} 12	(19 ⁻)		D	J ^{π} : from 1694.4 γ to (17 ⁻); assumed E2 cascade member.
12267.7 ^b 7	(20^{+})		D	J^{π} : from 1621.5 γ to (18 ⁺); assumed E2 cascade member.
13160.5 ^{&} 15	(20^{+})		D	J^{π} : from 1892 γ to (18 ⁺); assumed E2 cascade member.
13181.4 ^{<i>d</i>} 11	(21^{-})		D	J ^{π} : from 1649.2 γ to (19 ⁻); assumed E2 cascade member.
13727.0 [°] 14	(21 ⁻)		D	J^{π} : from 1948.4 γ to (19 ⁻); assumed E2 cascade member.
14257.7 ⁰ 11	(22^{+})		D	J^{π} : from 1990.0 γ to (20 ⁺); assumed E2 cascade member.
15251 ^d 3	(23-)		D	J^{π} : from 2070 γ to (21 ⁻); assumed E2 cascade member.
15806° 7	(23-)		D	J^{π} : from 2079 γ to (21 ⁻); assumed E2 cascade member.
16490 ⁰ 3	(24 ⁺)		D	J^{π} : from 2232 γ to (22 ⁺); assumed E2 cascade member.
17870 ^{<i>d</i>} 4	(25 ⁻)		D	J^{π} : from 2618 γ to (23 ⁻); assumed E2 cascade member.
17966 ^c 7	(25^{-})		D	J ^{π} : from 2160 γ to (23 ⁻); assumed E2 cascade member.

Adopted Levels, Gammas (continued)

⁷⁰Se Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
19218 ^b 5	(26 ⁺)	D	J^{π} : from 2728 γ to (24 ⁺); assumed E2 cascade member.
20246 ^c 8	(27 ⁻)	D	J^{π} : from 2280 γ to (25 ⁻); assumed E2 cascade member.

[†] From a least-squares fit to $E\gamma$'s, by evaluators. $\Delta E\gamma = 1$ keV is assumed when no uncertainty is available.

[±] From recoil distance Doppler shift method (2008Lj01), unless otherwise noted.

[#] From recoil distance Doppler shift method (1986He17), using singles data.

[@] Effective lifetime from recoil distance method, not corrected for the side feedings (1986He17).

& Band(A): g.s. yrast band.

^{*a*} Band(B): Band based on 1600, 2^+ .

^b Band(C): Band based on 4607, 8^+ .

^c Band(D): Band based on 3915, 7⁻.

^d Band(E): Band based on 4896, (9^{-}) .

Adopted Levels, Gammas (continued)												
	$\frac{\gamma^{(70}\text{Se})}{2}$											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	δ^d	α ^e	Comments			
944.52	2+	944.51 5	100	0.0	0+	E2		4.82×10 ⁻⁴	α (K)=0.000429 6; α (L)=4.50×10 ⁻⁵ 7; α (M)=7.00×10 ⁻⁶ 10; α (N)=5.96×10 ⁻⁷ 9 B(E2)(W,u)=19.7 13			
1599.9	2+	655.1 5	100 <i>21</i>	944.52	2+	M1+E2 ^{<i>a</i>}	-1.0 +1-2	0.00109 4	$\alpha(K)=0.00097 \ 3; \ \alpha(L)=0.000103 \ 3; \ \alpha(M)=1.60\times10^{-5} \ 5; \ \alpha(N)=1.36\times10^{-6} \ 4 \ B(E2)(W.u.)=33 \ 14; \ B(M1)(W.u.)=0.009 \ 4 \ \delta; \ Other; \ 1.4 + 2.3 - 0.6 \ (1980Wa19).$			
		1600.1 7	25 5	0.0	0+	E2		2.79×10 ⁻⁴				
2010.3	(0 ⁺)	1065.8 [@] 3	100@	944.52	2+	(E2)		3.63×10^{-4}	$\alpha(K)=0.0003235; \alpha(L)=3.38\times10^{-5}5; \alpha(M)=5.26\times10^{-6}$ 8: $\alpha(N)=4.48\times10^{-7}7$			
2038.8	4+	438.9 5	0.8 7	1599.9	2+	[E2]		0.00415	$\alpha(K)=0.00368\ 6;\ \alpha(L)=0.000400\ 6;\ \alpha(M)=6.21\times10^{-5}\ 9;$ $\alpha(N)=5.20\times10^{-6}\ 8$ B(E2)(W,u)=17 15			
		1094.4 <i>1</i>	100 3	944.52	2+	E2		3.41×10 ⁻⁴	α (K)=0.000304 5; α (L)=3.18×10 ⁻⁵ 5; α (M)=4.94×10 ⁻⁶ 7; α (N)=4.22×10 ⁻⁷ 6 B(E2)(W.u.)=21.5 18			
2382.5	4+	782.6 3	100 12	1599.9	2+	E2 ^b		7.71×10 ⁻⁴	$\alpha(K) = 0.000687 \ 10; \ \alpha(L) = 7.25 \times 10^{-5} \ 11; \alpha(M) = 1.128 \times 10^{-5} \ 16; \ \alpha(N) = 9.57 \times 10^{-7} \ 14 B(E2)(Wu) > 5.2$			
		1438.1 7	8.×10 ¹ 5	944.52	2+	E2 ^b		2.54×10 ⁻⁴	$\alpha(K)=0.0001692\ 24;\ \alpha(L)=1.755\times10^{-5}\ 25;\alpha(M)=2.73\times10^{-6}\ 4;\ \alpha(N)=2.33\times10^{-7}\ 4B(E2)(Wu)>0\ 20$			
2518.6	3(-)	1574.1.9	100	944.52	2^{+}	D			$\delta: \delta = -0.26 \ 15 \ (1981Ah03): \ 0.0 \ (1980Wa19).$			
2553.1	-	1608 6 [‡]	100#	944 52	2+	_						
3003.2	6+	620.7 9	3 1	2382.5	- 4 ⁺	[E2]		1.45×10 ⁻³	α (K)=0.001291 <i>19</i> ; α (L)=0.0001376 <i>21</i> ; α (M)=2.14×10 ⁻⁵ <i>4</i> ; α (N)=1.81×10 ⁻⁶ <i>3</i> B(E2)(W,u)=8 <i>3</i>			
		964.39 5	100 4	2038.8	4+	E2		4.58×10 ⁻⁴	α (K)=0.000408 6; α (L)=4.28×10 ⁻⁵ 6; α (M)=6.66×10 ⁻⁶ 10; α (N)=5.67×10 ⁻⁷ 8 B(E2)(W.u.)=29 5			
3139.6		2195.0 [@] 3	$100^{@}$	944.52	2+				/			
3218.4	(6 ⁺)	215 5	11 7	3003.2	6 ⁺							
		835.9 4	100 11	2382.5	4+							
3356.4		973.9 [‡]	100 #	2382.5	4+				- · · ·			
3387.4	5-	868.8 4	57 9	2518.6	3(-)	[E2]		5.91×10 ⁻⁴	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000526 \ 8; \ \alpha(\mathbf{L}) = 5.54 \times 10^{-5} \ 8; \ \alpha(\mathbf{M}) = 8.61 \times 10^{-6} \\ &I3 \ \alpha(\mathbf{N}) = 7.32 \times 10^{-7} \ 11 \\ &\mathbf{B}(\mathbf{E2})(\mathbf{W}.\mathbf{u}.) = 4.0 \ 14 \end{aligned}$			

4

 $^{70}_{34}$ Se₃₆-4

Adopted Levels, Gammas (continued)

γ (⁷⁰Se) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	α^{e}	Comments
3387.4	5-	1348.6 4	100 12	2038.8	4+	E1(+M2) ^C		δ : +0.12 with large error (1981Ah03); 0.0 (1980Wa19).
3524.1	(5 ⁻)	1005.5 7	22 7	2518.6	3(-)	(E2) ^b	4.15×10 ⁻⁴	$\alpha(K)=0.000370 \ 6; \ \alpha(L)=3.87\times10^{-5} \ 6; \ \alpha(M)=6.02\times10^{-6} \ 9; \ \alpha(N)=5.13\times10^{-7} \ 8 \ B(E2)(W.u.)>0.64$ With δ_{1} D + O = 0.06 + 0 = 2 (1081.4 b02)
		1485.2 5	100 13	2038.8	4+	(E1) ^C	3.29×10 ⁻⁴	Mult., o: D+Q, $-0.06 + 9-2$ (1981An05). $\alpha(K)=8.00\times10^{-5}$ 12; $\alpha(L)=8.22\times10^{-6}$ 12; $\alpha(M)=1.278\times10^{-6}$ 18; $\alpha(N)=1.095\times10^{-7}$ 16 B(E1)(W,u)>1.1×10^{-5}
3644		1261 10	100	2382.5	4+			
3788.9	(6 ⁻)	264.8 <i>3</i>	100	3524.1	(5^{-})	D+Q		Mult., \delta: D+Q, 0.0< \delta<3.7 (1980Wa19). Other: Q (1981Ah03).
3915.4	7-	126.6 <i>3</i>	5.7 20	3788.9	(6 ⁻)			
		528.0 2	28.7 20	3387.4	5-	E2 ^b	0.00233	$\alpha(K)=0.00207 \ 3; \ \alpha(L)=0.000223 \ 4; \ \alpha(M)=3.46\times10^{-5} \ 5; \ \alpha(N)=2.91\times10^{-6} \ 4$ B(F2)(Wu)>11
		912.2 <i>1</i>	100 4	3003.2	6+	E1	2.17×10^{-4}	$\alpha(K) = 0.000194 \ 3; \ \alpha(L) = 2.00 \times 10^{-5} \ 3; \ \alpha(M) = 3.12 \times 10^{-6} \ 5; \\ \alpha(N) = 2.66 \times 10^{-7} \ 4 \ 5$
								B(E1)(W.u.)>2.6×10 ⁻⁵ Mult., δ : E1+M2 with δ =-0.15 5 (1981Ah03), however, this results in an M2 strength which exceeds the RUL.
4037.6	8+	1034.4 <i>1</i>	100	3003.2	6+	E2	3.89×10 ⁻⁴	$\alpha(K)=0.000346 5; \alpha(L)=3.62\times10^{-5} 5; \alpha(M)=5.64\times10^{-6} 8;$ $\alpha(N)=4.80\times10^{-7} 7$ B(E2)(W.u.)>7.0
								Mult.: Q from R(DCO) in 58 Ni(14 N,pn γ), 60 Ni(12 C,2n γ); M2 excluded by comparison to RUL.
4187.4	(8^{+})	969.0 <i>6</i>	100	3218.4	(6^{+})			
4324.5		937.0 [‡]		3387.4	5-			
		1321.3 [‡]		3003.2	6+			
4410.7		495.3 <i>3</i>	100	3915.4	7-			
4607.0	8+	569 2	18 8	4037.6	8+			
		691.5 6	56 8	3915.4	7-			
1006 5	$\langle 0 - \rangle$	1603.7 6	100 12	3003.2	6+			
4896.7	(9 ⁻)	486.0 3	29.9	4410.7	7-			
		981.32	100 /	3915.4	/			
4955.0	(10^{+})	348.07 +	100"	4607.0	8 ⁺			
5205.8	(10^{-})	1108.12 8 1203 6 3	100	4037.6	δ' 7-			
5308 1	(3) (10 ⁺)	1295.05	100	4187 A	(8^{+})			
5693 2	(10^{+})	1086 2 2	100 7	4607.0	8 ⁺			
5675.2	(10)	1655.4 9	41 6	4037.6	8+			
5805.5	(11 ⁻)	908.7 2	100	4896.7	(9 ⁻)			
6017.0		1062.0 [‡]	100 [#]	4955.0				

 $\boldsymbol{\sigma}$

 $^{70}_{34}$ Se $_{36}$ -5

γ ⁽⁷⁰Se) (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f = J_j'$	τ f
6490.0	(11^{-})	1280.9 2	100	5209.1 (9-)	9624.1	(17^{-})	1606.4 3	100	8017.7 (15-	-)
6510.2	(12^{+})	1304.45 9	100	5205.8 (10 ⁺)	10084.1	(17^{-})	1312.3 <i>3</i>	100	8771.8 (15-	-)
6602	(12^{+})	1294 5	100	5308.1 (10+)	10646.2	(18^{+})	1215.9 2	100	9430.3 (164	+)
6873.0	(13^{-})	1067.5 2	100	5805.5 (11-)	11120.5		1624.3 6	100	9496.2 (16+	+)
6956.9	(12^{+})	1263.6 <i>3</i>	100 10	5693.2 (10 ⁺)	11268.5	(18^{+})	1772.3 9	100	9496.2 (16+	+)
		1750.9 9	37 5	5205.8 (10+)	11532.2	(19 ⁻)	1908.1 7	100	9624.1 (17-	-)
7305.8	(13-)	348.0 f ‡		6956.9 (12+)	11778.5	(19 ⁻)	1694.4 9	100	10084.1 (17-	-)
		796.5 [‡]		6510.2 (12+)	12267.7	(20^{+})	1621.5 <i>3</i>	100	10646.2 (184	+)
7554.0	(13^{-})	1064.0 <i>3</i>	100	6490.0 (11 ⁻)	13160.5	(20^{+})	1892 <i>1</i>	100	11268.5 (184	+)
7940.8	(14^{+})	1430.6 <i>1</i>	100	6510.2 (12 ⁺)	13181.4	(21^{-})	1649.2 <i>4</i>	100	11532.2 (19-	-)
8017.7	(15^{-})	1144.7 2	100	6873.0 (13 ⁻)	13727.0	(21^{-})	1948.4 6	100	11778.5 (19-	-)
8029	(14^{+})	1427.2 9	100	$6602 (12^+)$	14257.7	(22^{+})	1990.0 9	100	12267.7 (20+	+)
8316.3	(14^{+})	1359.4 <i>3</i>	100 8	6956.9 (12+)	15251	(23-)	2070 <i>3</i>	100	13181.4 (21-	-)
		1806.0 <i>6</i>	36 5	6510.2 (12 ⁺)	15806	(23^{-})	2079 7	100	13727.0 (21	-)
8349.5		1043.7 [‡]	100 [#]	7305.8 (13 ⁻)	16490	(24^{+})	2232 <i>3</i>	100	14257.7 (224	+)
8771.8	(15^{-})	1217.8 <i>3</i>	100	7554.0 (13-)	17870	(25^{-})	2618 2	100	15251 (23-	-)
9430.3	(16^{+})	1114.0 <i>3</i>	100 10	8316.3 (14 ⁺)	17966	(25^{-})	2160 2	100	15806 (23-	-)
		1489.4 <i>3</i>	63 7	7940.8 (14+)	19218	(26^{+})	2728 4	100	16490 (24+	+)
9496.2	(16^{+})	1555.3 <i>3</i>	100	7940.8 (14 ⁺)	20246	(27 ⁻)	2280 4	100	17966 (25	-)

6

[†] From ⁴⁰Ca(⁴⁰Ca, $2\alpha 2p\gamma$), unless otherwise noted.

[‡] From ⁴⁰Ca(³⁶Ar, α 2p γ).

[#] From ⁴⁰Ca(³⁶Ar, α 2p γ).

[@] From ${}^{58}\text{Ni}({}^{14}\text{N},\text{pn}\gamma)$, ${}^{60}\text{Ni}({}^{12}\text{C},2n\gamma)$.

& From $\gamma(\theta)$, R_{DCO} and γ -deexcitation pattern in ⁵⁸Ni(¹⁴N,pn γ), ⁶⁰Ni(¹²C,2n γ) (1981Ah03) or $\gamma(\theta)$ and linear polarization measurements in ⁶⁰Ni(¹²C,2n γ) (1980Wa19), unless otherwise stated.

(12C,2n γ); diffess otherwise stated. ^a D+Q from $\gamma(\theta)$ in ⁵⁸Ni(¹⁴N,pn γ),⁶⁰Ni(¹²C,2n γ); $\Delta\pi$ = no from level scheme. ^b Q from $\gamma(\theta)$ in ⁵⁸Ni(¹⁴N,pn γ),⁶⁰Ni(¹²C,2n γ); M2 excluded by comparison to RUL. ^c D+Q (or D) from $\gamma(\theta)$ in ⁵⁸Ni(¹⁴N,pn γ),⁶⁰Ni(¹²C,2n γ); $\Delta\pi$ = yes from level scheme. ^d From $\gamma(\theta)$ in ⁵⁸Ni(¹⁴N,pn γ) (1981Ah03).

^e Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*f*} Multiply placed.

Level Scheme

Intensities: Relative photon branching from each level

⁷⁰₃₄Se₃₆

Level Scheme (continued)

Intensities: Relative photon branching from each level

⁷⁰₃₄Se₃₆

Level Scheme (continued)

Intensities: Relative photon branching from each level

⁷⁰₃₄Se₃₆

 $^{70}_{34}$ Se $_{36}$