58 Ni(14 N,pn γ), 60 Ni(12 C,2n γ) 1981Ah03,1980Wa19

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	G. Gürdal, E. A. Mccutchan	NDS 136, 1 (2016)	1-Jul-2016				

1981Ah03: ⁵⁸Ni(¹⁴N,pn γ) with E(¹⁴N)=38 MeV. The beam provided by ORNL EN Tandem. 58 mg/cm² thick ⁵⁸Ni target. γ -rays were measured using two Ge(Li) and one Na(I) detectors. Measured E γ , I γ , $\gamma\gamma$ coin, $\gamma(\theta)$, $\gamma\gamma(\theta)$. Deduced DCO and mixing ratio.

1980Wa19: ⁶⁰Ni(¹²C,2n γ) with E(¹²C)=34 MeV. More than 99% enriched 3-5 mg/cm² thick ⁶⁰Ni target. Measured E γ , $\gamma\gamma$ coin, $\gamma(\theta)$, and γ n coincidences, linear polarization. Deduced multipolarity and mixing ratio.

1975GuYV: E=36 MeV, 58 Ni(14 N,pn γ), T_{1/2} by plunger technique.

1974No08: ⁵⁸Ni(¹⁴N,pn γ) with E(¹⁴N)=36 MeV. 99.89% enriched 2.55 mg/cm² thick ⁵⁸Ni target. Measured E γ , $\gamma\gamma$ coincidences.

⁷⁰Se Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0.0 [@]	0^{+}		
945.4 [@] 2	2+	1.1 ps 3	J^{π} : 2 ⁺ from 945.4 γ E2 to 0 ⁺ .
1601.4 ^{&} 2	2^{+}		J^{π} : 2 ⁽⁺⁾ from 1601.4 γ Q to 0 ⁺ ; 656.0 γ D+Q to 2 ⁺ .
2011.2 4	(0^{+})		J^{*} : from 1065.8 γ Q to 2 [*] . $\gamma(\theta)$ in both 1980wa19 and 1981An03 is isotropic.
2039.6 4	4+	2.3 ps 6	J^{π} : from 1094 γ E2 to 2 ⁺ .
2384.4 ^{&} 3	4+		J^{π} : from 782.9 γ Q to 2 ⁽⁺⁾ ;1439 γ Q to 2 ⁺ .
2519.2 4	3-		J^{π} : from 1573 γ D to 2 ⁺ .
3004.1 [@] 5	6+		J^{π} : from 964.6 γ E2 to 4 ⁺ .
3140.4 4			E(level): based on deexciting 2195γ (1981Ah03). Transition not seen by 1980Wa19.
3388.7 5	5-		J^{π} : from 1349.0 γ D(+Q) to 4 ⁺ .
3525.2 4	(5^{-})		J^{π} : as proposed in 1980Wa19. Other: (4) in 1980Wa19.
3789.8 5	(6 ⁻)		J^{π} : from 1980Wa19. Other: (5) in 1981Ah03.
3916.1 5	7-		J^{π} : from 912.1 γ E1 to 6 ⁺ .
4038.9 [@] 6	8+		J^{π} : from 1034.8 γ Q to 6 ⁺ .

 † From a least-squares fit to Ey's, by evaluators.

[‡] From 1981Ah03 based on $\gamma(\theta)$, R_{DCO} and γ -deexcitation pattern. Additional support for J^{π} assignments as determined in this dataset are indicated in the comments.

[#] From 1975GuYV.

[@] Band(A): yrast band.

& Band(B): $K^{\pi}=2^+ \gamma$ vibrational band.

$$\gamma(^{70}\text{Se})$$

Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	δ#	Comments
264.6 3	8.8	3789.8	(6 ⁻)	3525.2 (5 ⁻)	D+Q [@]		Mult., δ : from $\gamma(\theta)$ in 1980Wa19 which gives mult=D+Q, 0.0< δ <3.7 (1980Wa19). 1981Ah03 give E2 for the transition multipolarity, however, this does not agree with their measured A ₂ and A ₄ values and their assignment as J^{π} =(5) to (4) transition. Mult.: A ₂ =-0.14 5, A ₄ =0.0 5 (1980Wa19); A ₂ =-0.28 6, A ₄ =0.09 7 (1981Ab03)
527.3 <i>3</i>	2.2	3916.1	7-	3388.7 5-	Q		Mult.: $A_2 = +0.24 \ 10, A_4 = -0.12 \ 13 \ (1981Ah03).$
656.0 <i>3</i>	5.0	1601.4	2+	945.4 2+	D+Q	-1.0 +1-2	I_{γ} : other: $I_{\gamma}(527\gamma)$: $I_{\gamma}(912\gamma) = <10 :>90$ (1980Wa19). δ: Other: 1.4 +2.3-0.6 (1980Wa19).

58 Ni(14 N,pn γ), 60 Ni(12 C,2n γ) **1981Ah03,1980Wa19** (continued)

$\gamma(^{70}\text{Se})$ (continued)

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [†]	Comments
						Mult.: $A_2 = -0.25$ 7, $A_4 = 0.04$ 12 (1980Wa19); $A_2 = -0.23$ 5, $A_4 = 0.02$ 7 (1981Ah03).
782.9 <i>3</i>	7.7	2384.4	4+	1601.4 2+	Q	I_{γ} : other: $I_{\gamma}(656\gamma)$: $I_{\gamma}(1600\gamma)$ =52 2:48 2 (1980Wa19). Mult.: A ₂ =0.20 5, A ₄ =-0.07 6 (1980Wa19); A ₂ =0.30 10, A ₄ =-0.20 9 (1981Ah03).
			_		@	I_{γ} : other: $I_{\gamma}(783\gamma)$: $I_{\gamma}(1439\gamma)=63$ 4:37 4 (1980Wa19).
912.1 3	22.4	3916.1	7-	3004.1 6+	El	δ : -0.15 5 (1981Ah03). Mult.: A ₂ =-0.28 3, A ₄ =-0.08 5, POL=+0.16 4 (1980Wa19); A ₂ =-0.226 31, A ₄ =0.071 34 (1981Ah03).
945.4 <i>3</i>	100	945.4	2+	$0.0 \ 0^+$	E2 [@]	Mult.: $A_2=0.154$ 7, $A_4=-0.036$ 8, POL=+0.27 7 (1980Wa19); $A_2=0.172$ 16, $A_4=-0.077$ 20 (1981Ah03).
964.6 <i>3</i>	33.3	3004.1	6+	2039.6 4+	E2 [@]	Mult.: $A_2=0.15 \ 4$, $A_4=-0.08 \ 5$, POL=+0.62 $30 \ (1980Wa19)$; $A_2=0.181 \ 18$, $A_4=0.040 \ 22 \ (1981Ah03)$.
1005.9 3	6.7	3525.2	(5 ⁻)	2519.2 3-	(Q)	Mult., δ : Q in 1980Wa19; D(+Q), δ = -0.06 +9-2 (1981Ah03); A ₂ =0.41 15, A ₄ =-0.03 12 (1980Wa19); A ₂ =-0.164 25, A ₄ =0.069 31 (1981Ah03).
1024 0 2	11.1	4029.0	o+	2004 1 6+	0	I_{γ} : other: $I_{\gamma}(1006\gamma)$: $I_{\gamma}(1485\gamma)$ =18 3:83 3 (1980Wa19).
1054.8 5	11.1	4038.9	(0^+)	$0.004.1 0^{+}$	Q	Mult: from $K(DCO)$ in 1981An03. Mult: $A_{2}=0.00.4$, $A_{3}=0.01.5$ (1080Wa10): $A_{2}=-0.04.10$, $A_{3}=0.21$
1005.8 5	4.2	2011.2	(0)	943.4 2	Q	$\frac{11}{11} (1981Ah03).$
1094.2 3	59.7	2039.6	4+	945.4 2+	E2 [@]	Mult.: A ₂ =0.21 2, A ₄ =-0.06 2, POL=+0.47 <i>13</i> (1980Wa19); A ₂ =0.218 <i>19</i> , A ₄ =0.083 22 (1981Ah03).
1349.0 <i>3</i>	17.2	3388.7	5-	2039.6 4+	D(+Q)	δ : +0.12 with large error (1981Ah03); 0.0 (1980Wa19). Mult.: A ₂ =-0.052 28, A ₄ =-0.092 34 (1981Ah03); A ₂ =-0.20 7, A ₄ =0.01 8 (1980Wa19).
1439.0 <i>3</i>	7.7	2384.4	4+	945.4 2+	Q	Mult.: $A_2=0.25$ 8, $A_4=-0.06$ 10 (1980Wa19); $A_2=0.19$ 6, $A_4=-0.17$ 8 (1981Ah03).
1485.6 <i>3</i>	11.2	3525.2	(5 ⁻)	2039.6 4+	D	Mult.: From $\gamma(\theta)$ in 1980Wa19. A ₂ =-0.25 7, A ₄ =-0.10 8 (1980Wa19).
1573.8 <i>3</i>	7.6	2519.2	3-	945.4 2+	D	δ : -0.26 <i>I5</i> (1981Ah03); 0.0 (1980Wa19). Mult.: A ₂ =-0.295, A ₄ =0.03 <i>5</i> (1980Wa19); A ₂ =-0.36 <i>5</i> , A ₄ =-0.054 <i>54</i> (1981Ah03).
1601.4 <i>3</i>	7.0	1601.4	2+	$0.0 \ 0^+$	Q	Mult.: $A_2=0.25$ 8, $A_4=-0.05$ 9 (1980Wa19); $A_2=0.18$ 6, $A_4=-0.11$ 7 (1981Ah03).
2195.0 3	<1	3140.4		945.4 2+		E_{v} : Not seen by 1980Wa19.

[†] From $\gamma(\theta)$ and R_{DCO} in 1981Ah03, unless otherwise noted.

[‡] From 1981Ah03. Authors make only a general statement that uncertainties range from 5% to 20% depending on the strength of the transitions. 1980Wa19 provide only relative branchings from levels, which are indicated in the comments.

[#] From $\gamma(\theta)$ in 1981Ah03.

^(a) From $\gamma(\theta)$ and linear polarization measurements in 1980Wa19.

⁷⁰₃₄Se₃₆

⁵⁸Ni(¹⁴N,pn γ), ⁶⁰Ni(¹²C,2n γ) 1981Ah03,1980Wa19

