⁴⁰Ca(³⁶Ar,α2pγ), ⁵⁸Ni(¹⁴N,pnγ) **1986He17,1989My01,2008Lj01**

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	G. Gürdal, E. A. Mccutchan	NDS 136, 1 (2016)	1-Jul-2016							

1986He17: ⁵⁸Ni(¹⁴N,pn) with E(¹⁴N)=39 MeV. Beam was provided by FN tandem accelerator at Universitat Koln. A 67.8% enriched 0.9 μ g/cm² Ni target. 20 μ m thick Ta stopper. γ -rays were measured using 3 Ge detectors. Neutrons were detected using a circular 4-segment NE213 detector. Measured E γ , I γ , γ n coin, T_{1/2} by recoil-distance Doppler shift method. ⁴⁰Ca(²⁰Ar, α 2p γ) with E(⁴⁰Ar)=115 MeV. Beam was provided by VICKSI accelerator at Berlin. A 350 μ g/cm² Ca target with 96.9% ⁴⁰Ca on a thin 0.8 μ m Al foil was used. 20 μ m thick Ta foil used as a stopper. γ -rays were measured using three Ge(Li) detectors. Measured: E γ , I γ and T_{1/2} by recoil-distance Doppler shift method. Authors adopted average T_{1/2} from two experiments.

1989My01: ⁴⁰Ca(³⁶Ar, α 2p) with E(³⁶Ar)=145 MeV. Beam was provided by VICKSI accelerator at Berlin. A 99.96% enriched 1 mg/cm² Ca target on a thin 50 mg/cm² Bi was used. γ -rays were measured using ORIS spectrometer which consisted of 12 BGO shielded Ge(Li) detectors. Measured: E γ , I γ , $\gamma\gamma$ coin, DCO ratios (not given in the publication). Other:1988MyZZ.

2008Lj01: ⁴⁰Ca(³⁶Ar, α 2p) with E(³⁶Ar) =136 MeV. Beam was provided by accelerator at Legnaro. 0.5 mg/cm² enriched ⁴⁰Ca target on a 2.0 mg/cm² gold foil was used. 10 mg/cm² thick gold stopper. γ -rays were measured using GASP array of 38 Ge detectors. Cologne plunger was used to measure level lifetimes. Events with at least two prompt γ -rays detected in coincidence were recorded. Measured E γ and T_{1/2} using recoil-distance Doppler shift method.

2003LiZW: ${}^{40}Ca({}^{36}Ar, \alpha 2p)$, $E({}^{36}Ar) = 104$ MeV. ATLAS facility at ANL. Gammasphere and FMA were used. Measured Ey.

⁷⁰Se Levels

E(level) [†]	J ^{πa}	$T_{1/2}^{\#}$	Comments
0.0 [‡]	0+		
944.7 [‡]	2+	2.22 ps 14	$T_{1/2}$: Other: 1.0 ps 2 from recoil distance Doppler shift method (deduced using singles data) in 1986He17.
1600.9	2+	$3.3^{@}$ ps 9	
2011.4	(0^{+})		E(level): seen by 1986He17 only. J^{π} adopted in 1986He17 based on literature.
2038.0 [‡]	4+	0.97 ps 7	$T_{1/2}$: Other: 1.0 ps 2 from recoil distance Doppler shift method (deduced using singles data) in 1986He17.
2382.4	4+	<12 ^{&} ps	
2516.8	3-	4.2 [@] ps 6	
2553.3	(4^{+})		
3001.7 [‡]	6+	1.32 ps 21	T _{1/2} : Other: 2.7 ps 6 from recoil distance Doppler shift method, (deduced using singles data) in 1986He17.
3356.3	(6^{+})		
3386.0	$5^{(-)}$	6.1 [@] ps 17	
3522.0	5-	<9 ^{&} ps	
3645.5	(6^{+})	-	
3786.0	6-	0	
3913.4	7-	<15 ^{&} ps	
4035.0 [‡]	8+	<4 ^{&} ps	
4323.0	(7^{-})		
4408.5	$(7,8^{-})$		
4005.8	$(8,9^{+})$		
4951.8	(9)		
5203.9	10+		
5207.5	(8,9 ⁻)		
5691.3	(10^{+})		
5805.1	(11 ⁻)		
6013.8	(10, 11-)		
0487.0	(10,11)		

Continued on next page (footnotes at end of table)

⁴⁰Ca(³⁶Ar, α 2p γ), ⁵⁸Ni(¹⁴N,pn γ) **1986He17,1989My01,2008Lj01** (continued)

⁷⁰Se Levels (continued)

E(level) [†]	J ^{πa}	T _{1/2} #	Comments
6507.0 [‡] 6874.4 6955.5 7303.5	12 ⁺ (13 ⁻) (12 ⁺) (13 ⁻)	1.6 ns 2	$T_{1/2}$: quoted by 1989My01; generalized centroid-shift method.
7938.4 [‡] 8347.2 9493.4 [‡]	(14 ⁺) (14,15 ⁻) (16 ⁺)		

[†] From a least-squares fit to $E\gamma'$ s, by evaluators, unless indicated otherwise.

[‡] Yrast band.

[#] From recoil distance Doppler shift method (RDDS) in 2008Lj01, except where noted. Side feeding contributions in 2008Lj01 were eliminated in the analysis using coincidences.

[@] From recoil distance Doppler shift method in 1986He17, using singles data.

& Effective lifetime from recoil distance Doppler shift method in 1986He17, using singles data, not corrected for side feedings.

^a From DCO ratios observed in 1989My01 (DCOs are not given in the publication), unless stated otherwise.

$\gamma(^{70}\text{Se})$

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Comments
127.3		3913.4	7-	3786.0	6-	
264.0		3786.0	6-	3522.0	5-	
348.0 [#]		4951.8	(9)	4603.8	$(8,9^{+})$	
348.0 [#]		7303.5	(13^{-})	6955.5	(12^{+})	
486.7		4895.2	(9)	4408.5	(7.8^{-})	
495.1		4408.5	$(7,8^{-})$	3913.4	7-	
527.3	2.7 13	3913.4	7-	3386.0	$5^{(-)}$	
569.0		4603.8	$(8,9^{+})$	4035.0	8+	
619.3		3001.7	6+	2382.4	4+	
656.1	8.1 21	1600.9	2+	944.7	2+	
690.2		4603.8	$(8,9^{+})$	3913.4	7-	
781.5	7.1 14	2382.4	4+	1600.9	2+	
796.5		7303.5	(13 ⁻)	6507.0	12^{+}	
869.3		3386.0	$5^{(-)}$	2516.8	3-	
909.9		5805.1	(11^{-})	4895.2	(9)	
911.7	19 4	3913.4	7-	3001.7	6+	
937.0		4323.0	(7-)	3386.0	$5^{(-)}$	
944.6	100	944.7	2+	0.0	0^{+}	
963.7	21.2 15	3001.7	6+	2038.0	4+	
973.9		3356.3	(6^{+})	2382.4	4+	
981.8		4895.2	(9)	3913.4	7-	
1005.1	3.3 9	3522.0	5-	2516.8	3-	
1033.6		4035.0	8+	3001.7	6+	
1043.7		8347.2	$(14, 15^{-})$	7303.5	(13 ⁻)	
1062.0		6013.8		4951.8	(9)	
1066.7	14 4	2011.4	(0^{+})	944.7	2+	E_{γ} : seen by 1986He17 only.
1069.3		6874.4	(13^{-})	5805.1	(11 ⁻)	
1087.4		5691.3	(10^{+})	4603.8	$(8,9^+)$	
1093.3	51 <i>3</i>	2038.0	4+	944.7	2+	

$^{+0}$ Ca(50 Ar, $\alpha 2p\gamma$), 50 Ni($^{1+}$ N,pn γ) 1986He17,1989Miy01,2008Li01 (co
--

	γ ⁽⁷⁰ Se) (continued)										
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
1168.8		5203.9	10+	4035.0	8+	1431.4		7938.4	(14^{+})	6507.0	12+
1263.1		3645.5	(6 ⁺)	2382.4	4+	1437.9	7.3 16	2382.4	4+	944.7	2+
1264.2		6955.5	(12^{+})	5691.3	(10^{+})	1484	3.4 8	3522.0	5-	2038.0	4+
1280.1		6487.6	$(10, 11^{-})$	5207.5	$(8,9^{-})$	1555.0		9493.4	(16^{+})	7938.4	(14^{+})
1294.1		5207.5	(8,9 ⁻)	3913.4	7-	1572	13.5 22	2516.8	3-	944.7	2+
1303.1		6507.0	12+	5203.9	10^{+}	1600.9	6.3 13	1600.9	2+	0.0	0^{+}
1321.3		4323.0	(7^{-})	3001.7	6+	1608.6		2553.3	(4^{+})	944.7	2+
1348	14.8 16	3386.0	5(-)	2038.0	4+	1656.2		5691.3	(10^{+})	4035.0	8+

[†] From 1989My01.

[‡] Relative intensity from ⁵⁸Ni(¹⁴N,pnγ) at E(¹⁴N)=39 MeV (1986He17) unless indicated otherwise; see 1986He17 for intensities from the ⁴⁰Ca(³⁶Ar,α2pγ) reaction at E(³⁶Ar)=115 MeV. Iγ and DCO ratios not given in 1989My01.
[#] Multiply placed.

⁷⁰₃₄Se₃₆

4

⁴⁰Ca(³⁶Ar,α2pγ), ⁵⁸Ni(¹⁴N,pnγ) 1986He17,1989My01,2008Lj01

⁷⁰₃₄Se₃₆