Coulomb excitation

	Histo	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	G. Gürdal, E. A. Mccutchan	NDS 136, 1 (2016)	1-Jul-2016

2013Gu23: E(⁷⁰Ge) at 196, 225 MeV provided by ESTU tandem accelerator at YALE. Targets: multilayer C or Mg in front, Gd or Fe in the middle, and Ta+Cu at the back. Total of three targets were used with thicknesses 0.42, 0.44, 0.45 mg/cm² for C; 0.5, 0.9 mg/cm² for Mg; 3.24, 3.34, 4.0 mg/cm² for Gd; 1.0, 1.1, 1.4 mg/cm² for Ta; and 3.51, 3.90, 4.49, 4.92, 5.40 mg/cm² for Cu. γ -rays were detected using four HPGe detectors. Charged particles were detected using silicon detectors. Measured: E γ , (particle) γ coin, $\sigma(\theta)$, precession angles. Deduced g factors by Transient Field technique.

- 2007Bo41: E(⁷⁰Ge) at 190,225 MeV beam provided by ESTU tandem accelerator at Yale. Target: multilayer consisting of 0.42 mg/cm² C deposited on successive layers of 5 mg/cm² Ti and 3.24 mg/cm² Ga evaporated onto 1.4 mg/cm² Ta backed by 3.5 mg/cm² of Cu. γ -rays were detected using four HPGe detectors. Charged particles were detected using silicon detectors. Measured: E γ , (particle) γ coin, $\sigma(\theta)$. Deduced g factors by Transient Field technique.
- 2003Su01: ⁷⁰Ge beam provided by tandem accelerator at JAERI. The beam was impinged on a thick natural Pb target. γ -rays were detected using Compton-suppressed 12 HPGe detectors. The scattered ⁷⁰Ge was detected with a position-sensitive detector. Measured: $\gamma(\theta)$. Deduced matrix elements for six low-lying states.
- 1987La20: ³⁴Si beam at 75 MeV provided by Australian National University 14 UD Pelletron accelerator and incident upon a multilayer target (natural Ge target backed with Fe and Cu, respectively). Four Ge detectors were used to detect γ -rays and backscattered beam ions were detected using annular surface-barrier surface counter. Measured: $\gamma(\theta)$; deduced g-factors using TF technique.
- 1983Uh01: E(¹⁶O)=37.0-52.5 MeV, E(¹⁸O)=31.5-57.0 MeV, FWHM=75-200 keV; measured $\sigma(\theta)$ for elastic and inelastic scattering from $\theta(lab)=30^{\circ}-175^{\circ}$; DWBA analysis.

1980Le24: $E(^{16}O)=36-42$ MeV; 98.4% enriched thick ⁷⁰Ge used as a target. One Ge(Li) detector used to detect γ -rays. Measured: $E\gamma$, $I\gamma$.

1980Le16: $E({}^{16}O)=29.9$ MeV, $E({}^{6}Li)=10.5$ MeV. The beams provided by the Universite de Montreal Tandem accelerator. The scattered particles were detected by four surface-barrier detectors. Measured: elastic and inelastic scattering at ±157.5° and ±172.5°.

1977Fa07: $E(^{16}O)=36$ MeV; measured $\gamma(\theta,H,t)$ in polarized Gd at 80° K; Reanalysis of data to deduce g-factors from IMPAC measurements in 1969He11.

1974Hu01: $E({}^{16}O)=33-38$ MeV provided by Rutgers-Bell tandem accelerator. γ -rays were detected using NaI detectors. Backscattered particles were detected using an annular Si detector. Measured: $\gamma(\theta)$. Reanalysis of data to deduce g-factors from IMPAC measurements in 1969He11.

1969He11: $E(^{16}O)$ =33-38 MeV. Measured: $\gamma\gamma(\theta,H)$; IMPAC.

1967Kr01: $E(^{16}O)$ =30-37.5 MeV. Measured σ .

1984Pa20: $E(^{28}Si)=47.3-62.1$ MeV provided by Oxford Folded tandem accelerator. γ -rays were detected using four NaI and one Ge(Li) detector. Measured: $\gamma(\theta,H)$; deduced g-factors using Transient Field technique.

1972Si06: $E({}^{35}Cl)=60-83$ MeV, and $E({}^{32}S)=75.7$ MeV. Measured: $\sigma(E\gamma)$, $E\gamma$, γ yield ratios.

1969Si15: $E\alpha$ =5-11 MeV, FWHM=20-25 keV; E(¹⁶O)=25, 34-43 MeV, FWHM= 100 keV; measured Coulomb excitation probabilities.

1965Ro09: $E\alpha$ =6-9 MeV. Measured: $E\gamma$.

1962St02: $E\alpha$ =3-10 MeV. Measured: γ yield.

⁷⁰Ge Levels

$\frac{\mathrm{E(level)}^{\dagger}}{0.0}$	$\frac{J^{\pi \#}}{2^{+}}$	T _{1/2} @	Comments
0.0 1039.5 5	2+	1.31 ps 2	 B(E2)↑=0.179 3; g=+0.455 26 B(E2)↑: from 1980Le16. Others: B(E2)=0.179 3 (1983Uh01); B(E2)=0.179 3; B(E2)=0.172 21 (1962St02). g: from weighted average of 0.44 4 (2013Gu23, using TF), 0.45 8 (2007Bo41, using TF), 0.370 89 (1987La20, using TF), 0.468 26 (1984Pa20, using TF) and 0.47 10 (1977Fa07, using IMPAC). Others: 0.38 8 (1977Fa07), 0.59 29 (1969He11); the same data reanalyzed by 1974Hu01 gave g=0.88 21; the same data reanalyzed by 1977Fa07 according to the latest understanding of the

Continued on next page (footnotes at end of table)

Coulomb excitation (continued)

⁷⁰Ge Levels (continued)

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{(a)}$	Comments
			experiment and corrections give g=0.47 <i>10</i> (this value is included in the weighted average). Q=+0.04 3 from multistep Coulomb excitation in 2003Su01; Q=+0.03 6 from multistep Coulomb excitation in 1980Le16 and correspond to considering ⁷⁰ Ge to be almost spherical; if it is considered as a moderately deformed oblate spheroid the same data give B(E2)=0.178 <i>3</i> and Q=+0.09 6; Q=+0.003 <i>100</i> (1969Si15).
1215.6 5	0+	4.8 ns 7	B(E2)↑=0.014 2 B(E2)↑: Coulomb excitation from 1039.5 to 1215.6 level; weighted average of 0.0158 24 (1972Si06) and 0.012 3 (1980Le24).
1708.2 5	2+	4.2 ps +26-14	 T_{1/2}: Deduced from B(E2). B(E2)↑=0.0013 <i>10</i>; g=+0.66 <i>37</i> (2013Gu23) g: weighted average of +0.39 <i>37</i> and +1.03 <i>44</i> for two targets and two beam energies in 2013Gu23 using TF. B(E2)↑: for Coulomb excitation from g.s. to 1708.2 level (1980Le24). B(E2)(1040 to 1708)=0.050 <i>19</i>; B(E2)(1216 to 1708)=0.018 <i>16</i> (1980Le24).
			$T_{1/2}$: from B(E2) for Coulomb excitation from 1039.5 to 1708.2 level with a branching fraction of 0.53 for the 669 transition from adopted γ 's. Other: 5.4 ps +53 – 18 in 1980Le24. Q: =-0.07 4 from multistep Coulomb Excitation in 2003Su01.
2153.6 5	4+	1.7 ps 4	 Q=+0.22 5 (2003Su01); B(E2)↑=0.034 7; g=+0.42 20 g: weighted average of +0.21 63 and +0.22 36 for two targets and two beam energies (2013Gu23, using TF) and 0.5 2 (2007Bo41, using TF). B(E2)↑: for Coulomb excitation from 1040 to 2154 level.
2157.5 [‡] 2562.5 5	2+ 3-		 Q=+0.26 10 (2003Su01) B(E3)↑=0.068; g=0.1 3 (2007Bo41) B(E3)↑: from 1983Uh01; authors state that large uncertainties in data and possible defects in the first order DWBA do not allow a precise determination of B(E3). Other: 0.043 3 (1980Le24).

[†] From a least squares fit to Eγ's by the evaluators.
[‡] From 2003Su01.
[#] From Adopted Levels.

[@] Deduced from reduced transition probabilities in 1980Le24, unless otherwise stated.

$\gamma(^{70}\text{Ge})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ} ‡	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.#	Comments
1039.5	2^{+}	1039.5 5	100	0.0	0^{+}	E2	
1215.6	0^{+}	176.1 5	100	1039.5	2^{+}	E2	
1708.2	2+	492.6 5	1.6 5	1215.6	0^{+}	E2	Authors (1980Le24) stated that the energy and intensity of this transition taken from $(p,p'\gamma)$ (1969Hi01).
		668.7 5	100	1039.5	2+	M1+E2	
		1708.2 5	57 11	0.0	0^{+}	E2	
2153.6	4^{+}	1114.1 5	100	1039.5	2^{+}	E2	
2157.5	2^{+}	942.1		1215.6	0^{+}		
2562.5	3-	1523.0 5	100	1039.5	2+		

[†] Relative photon branching from each level (1980Le24).
[‡] From 1980Le24, unless otherwise stated.
[#] From Adopted Levels.

Coulomb excitation

Level Scheme

Intensities: Relative photon branching from each level

