				Histo	ory		
		Туре	Author		Citation	1	Literature Cutoff Date
		Full Evaluation	G. Gürdal, E. A. Mc	cutchan	NDS 136, 1 (202	16)	1-Jul-2016
$Q(\beta^{-}) = -6.22 \times 10^{-10}$ S(2n)=19725.7 2 α : Additional inf) ³ 5; S(1; S(2 ₁ Formation	(n)=11532.5 <i>16</i> ; p)=15132.9 <i>11</i> (2 on 1.	$S(p)=8523.0 \ 15; \ Q(\alpha)=2012Wa38).$	-4087.7	11 2012Wa38		
				⁷⁰ Ge L	evels		
			Cross F	Reference	(XREF) Flags		
		$ \begin{array}{rrr} {\bf A} & {}^{70}{\rm Ga}\beta^- \\ {\bf B} & {}^{70}{\rm As}\varepsilond \\ {\bf C} & {}^{70}{\rm Zn}2\beta^- \\ {\bf D} & {}^{12}{\rm C}({}^{66}{\rm Zr}{\rm r} \\ {\bf E} & {}^{46}{\rm Ti}({}^{28}{\rm Si} \\ {\bf F} & {}^{64}{\rm Ni}({}^{12}{\rm C} \\ {\bf G} & {}^{65}{\rm Cu}({}^7{\rm Li} \\ {\bf H} & {}^{66}{\rm Zn}({}^6{\rm Li} \\ {\bf I} & {}^{68}{\rm Zn}(\alpha,2) \end{array} $	decay ecay decay ${}^{8}Be\gamma$, ${}^{8}Be\gamma$, ${}^{4}p\gamma$, ${}^{2}n\gamma$, ${}^{60}Ni({}^{12}C,2p\gamma)$, d) ${}^{67}Zn(\alpha,n\gamma)$	J 69 G K 69 G L 69 G M 69 G N Cou O 70 G P 70 G R 70 G	ia(p, γ) ia(d,n) ia(α ,t) ia(3 He,d) ilomb excitation ie(γ , γ') ie(pol γ , γ') ie(n,n' γ) ie(p,p' γ)	S T U V W X Y	⁷⁰ Ge(p,p'),(pol p,p') ⁷⁰ Ge(d,d') ⁷⁰ Ge(6 Li, 6 Li') ⁷⁰ Ge(α, α') ⁷⁰ Ge(e,e') ⁷² Ge(p,t) ⁷⁴ Se(d, 6 Li)
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF				Comments
0.0 ^b	0^{+}	stable	ABCDEFGHI JKLMNOPQRS	TUVWXY	R=4.055 fm 8; v	where I	R is the rms value of charge
1039.506 ^b 9	2+	1.31 ps 2	AB DEFG IJ LMN QRS	TUVWXY	distribution from $Q=+0.04 \ 3 \ (200)$ $T_{1/2}$: from B(E2) 1.38 ps 8 from from DSAM i $^{68}Zn(\alpha,2n\gamma),^{6}$ J ^{π} : from 1039.49 Q: from multiple μ : from weighted g-factor using using TF), 0.8 0.740 <i>178</i> (19) (1984Pa20, from from g-factor 1.18 58 (1969) 1974Hu01 gav 1977Fa07 accor experiment an	om (e,e om (e,e (3Su01) 2)=0.17 n B(E2) n B(E2) (67 Zn(α 67 Zn(b); μ =+0.91 5 (9 3 in Coulomb excitation. Others: ()=0.169 10 from (e,e'), 1.32 ps 14 ()=0.169 10 from (e,e'), 1.32
1215.621 ^e 15	0+	3.7 ns 2	AB DE GHIJKLMN QRS	TUV XY	(this value is i $T_{1/2}$: from electr pulsed-cyclotr ⁷⁰ Ga β^- decay excitation. J ^{π} : L=0 from ⁷² g.s The level (2003Su01)	include ron spe on bea y; 4.8 1 Ge(p,t) l interp	d in the weighted average). ectrometer measurement with m in $(p,p'\gamma)$. Others: 2.9 ns 4 from ns 7 from B(E2) in Coulomb) and 66 Zn(6 Li,d); E0 transition to reted as deformed-intruder state
1707.689 ^c 14	2+	1.94 ps 28	B DEFG IJ LMN QRS	TUV X	Q=-0.07 4 (200 J ^{π} : from 1708 γ J T _{1/2} : from DSA from (α ,2n γ),	$\begin{array}{c} \mathbf{3Su01} \\ \mathbf{E2 \ tran} \\ \mathbf{M \ in }^{1} \\ (\alpha, \mathbf{n}\gamma) \end{array}$); μ =+1.3 7 (2013Gu23) nsition to g.s. ² C(⁶⁶ Zn, ⁸ Be). Other: 1.1 ps +10-4 , 4.2 ps +26-14 from Coulomb

⁷⁰Ge Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF		Comments
2153.084 ^b 20	4+	0.76 ps <i>14</i>	B DEFG IJ L N	QR UV X	excitation and > 7 ps in 65 Cu(7 Li, 2n γ), 60 Ni(12 C,2p γ). Q: from multiple Coulomb Excitation. μ : from g-factor measurements using TF in Coulomb excitation. Other: 0.8 <i>12</i> from 12 C(66 Zn, 8 Be) using TF. Q=+0.22 <i>5</i> (2003Su01); μ =+1.7 <i>8</i> T _{1/2} : from DSAM in 12 C(66 Zn, 8 Be). Others: 4 ps <i>1</i> from DSAM in 65 Cu(7 Li,2n γ), 60 Ni(12 C,2p γ) and 1.7 ps <i>4</i> from Coulomb excitation and 0.8 ps <i>2</i> from DSAM in 68 Zn(α .2n γ), 67 Zn(α ,n γ). J ^{π} : from 1113.60 γ E2 to 2 ⁺ ; assumed E2 cascade member. Q: from multiple Coulomb Excitation (2003Su01).
2156.744 ^e 21	2+		BDGJMN	QRS	μ . from g-factor measurements using 11 m Coulomb excitation (2013Gu23,2007Bo41). Q=+0.26 <i>10</i> (2003Su01) J ^π : 941.10γ E2 to 0 ⁺ .
01(0				C.T.	Q: from multiple Coulomb Excitation.
2307.0 5	0^+	≤40 ps	J LM	QRS X	T _{1/2} : centroid-shift time measurement in $(p,p'\gamma)$. J ^{π} : E0 transition to g.s.
2451.313 ^c 21	3+	1.7 [#] ps +10-3	B D FG IJ LM	QRS	J^{π} : from 743.62 γ M1(+E2) to 2 ⁺ ; J = 3 from angular distribution and yield function in (α ,2n γ).
2534.95 4	2+	0.6 [#] ps 2	BD IJLM	QRS X	J ^{π} : L(p,t)=2; J ^{π} not consistent with observed log <i>ft</i> =7.8 from 4 ⁺ .
2562.049 ^d 20	3-	0.50 ps 7	B DE G I LMN	QRSTUVWX	T _{1/2} : Other: >0.4 ps from DSAM in (n,n'γ). μ =0.3 9 (2007Bo41) T _{1/2} : weighted average of 0.55 ps 7 in ¹² C(⁶⁶ Zn, ⁸ Beγ) (from DSAM) and 0.4 ps 1 in ⁶⁵ Cu(⁷ Li,2nγ), ⁶⁰ Ni(¹² C,2pγ) (from DSAM). Others: 2.3 ps 5 from ⁶⁵ Cu(⁷ Li,2nγ), ⁶⁰ Ni(¹² C,2pγ). J ^π : L(p,t)=3. B(E3)=0.073 10 in ⁷⁰ Ge(e,e'); 0.068 from Coulomb excitation. μ : from transient field method in Coulomb excitation (2007Bo04).
2806.25 [°] 3	4+	0.6 [#] ps 2	B DEFG IJ LM	QRS VX	J^{π} : L(p,t)=4; 1098.54 γ E2 to 2 ⁺ . Discrepant with L(α, α')=3 for E=2800 keV 10 which may be a different level.
2887.4 7	0^{+}		LM	QRS X	J^{π} : from L(p,t)=0.
2945.0 10	$2^+_{2^+}$		J LM	QRS V X	J^{π} : from L(p,t)=2.
3046.439 20	3'		B IW	QRS U X	J [*] : from 889.72 γ D+Q to 2 ⁺ ; 893.59 γ D+Q to 4 ⁺ , log ft=5.75 from 4 ⁺ parent.
3058.695 ^e 16	4+	1.4 [#] ps 3	BDEGI m	QRST V	$T_{1/2}$: other: 1.0 ps 5 from DSAM in ⁶⁵ Cu(⁷ Li,2n\gamma), ⁶⁰ Ni(¹² C,2p\gamma).
3105.7 7	(0+)		М	QRS X	J ^{π} : from excitation function in (p,p' γ).
3130 10	a +	0.015		V	
3180.6 10	21	0.015 ps 6	М	QRS UV X	J': $L(p,t)=2$. T _{1/2} : from DSAM in $(n,n'\gamma)$
3194.2 6	4+		L	SVX	J^{π} : L(p,t)=4; discrepant with L(α, α')=(5) for E=3200 keV 10. Also, L(p,p')=4.

⁷⁰Ge Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	X	REF			Comments
3240.5 10	1+			LM O	RS		J ^{π} : 1 from $\gamma(\theta)$ in (γ, γ') and π =+ from L=1 in (³ He.d).
3294.79 8	3+,4+		Ве		QR	X	J^{π} : from 1587 γ to 2 ⁺ and L(p,p') = 4.
3296.98 ^b 3	6+	0.5 [#] ps 1	eFG I		QS		T _{1/2} : others: 2.6 ps 6 from DSAM in 65 Cu(7 Li,2n γ), 60 Ni(12 C,2p γ). I^{π} : from 1143 89 γ F2 to 4 ⁺ : band assignment
3308						х	
3314.5 7	1-			MO	QRS (JV X	J ^π : 1 from $\gamma(\theta)$ in (γ, γ') , π =− from L(α, α')=1. B(E1)↑: from ⁷⁰ Ge(γ, γ').
3334.8 10	0 ⁺ to 3 ⁺			LM	QRS	X	J^{π} : from L=1(+3) in (³ He,d) and from observed 2295.3 γ to 2 ⁺ .
3345 2 3351 2					S S		
3371.57 10	(3,4)	0.3 ps 2	В		Q		J ^{π} : log <i>ft</i> =7.7 <i>1</i> from 4 ⁺ in ε decay; J=5 unlikely because of 2333 γ to 2 ⁺ level. T _{1/2} : from DSAM in (n,n' γ).
3416.32 ^{<i>d</i>} 4	5-	13.7 [@] ps 10	DE G I	М	QS	X	J^{π} : L(p,t)=5.
							$T_{1/2}$: Other: > 14 ps in ${}^{65}Cu({}^{7}Li, 2n\gamma),$ ${}^{60}Ni({}^{12}C, 2p\gamma).$
3423 2	(2^+)					VX	J^{π} : from L(p,t)=(2).
3428 2	5 2-			м	STU) VV	J ⁿ : from $L(\alpha, \alpha') = 5$. I ^{π} : from $L(\alpha, \alpha') = 3$
3456 2	3 4 ⁺			11	S	V A	I^{π} : from L=4 in (n n') and (⁶ L i ⁶ L i')
3466? 6	·			М	0		
3482.3 5	$1^+, 2^+, 3^+$			М	RS	X	J^{π} : from L=1+3 in (³ He,d).
3488.276 21	(3,4 ⁺)		В		QRS		J^{π} : log <i>ft</i> =6.0 <i>l</i> from 4 ⁺ in ε decay; J=4 ⁻ and 5 unlikely because of 2449 γ to 2 ⁺ level.
3517? 6 3540?				M	т		
3562.7 6				М	RS	X	
3570.44 7	(3) ⁻		В	M	Sι	JV	J^{π} : from 2531.7 γ to 2 ⁺ ; 1471.24 γ to 4 ⁺ ; L=4(+2) in (³ He,d).
3580.7 10	4+	0.6 ps 2			QS		J ^{π} : L(α, α')=4. T _{1/2} : from DSAM in (n,n' γ).
3590.3 5				М	RS		, ,
3631.5 10	(2)+	0.5 ps 1		LM	QRS	X	J^{π} : from L(p,t)=(2); π =+ from L(³ He,d)=1. T _{1/2} : from DSAM in (n,n' γ).
3637 10	0^{+}	Ø				V	J^{π} : $L(\alpha, \alpha')=0.$
3666.78 ⁴ 6	6-	35 ^w ps 3	EGI	M	QS		J^{π} : J=6 from $\gamma(\theta)$ in ⁴⁶ Ti(²⁸ Si,4p γ), π from 250 γ M1(+E2) to 5 ⁻ .
							T _{1/2} : others: 40 ps 8 in 68 Zn(α ,2n γ), 67 Zn(α ,n γ) and 74 ps 6 in (HI,xn γ).
3669.4 [°] 10	(5 ⁺)	1 [#] ps <i>1</i>	FI	М			J^{π} : 1218 γ to 3 ⁺ ; band assignment.
3675.76 7	4^+		В	L	RS	V	J^{π} : from $L(\alpha, \alpha') = 4$.
3083 3 3687 3	0^{-1} 1+2+3+			м	c	X	J [*] : Irom L(p,t)=0. I^{π} : L = 1 + 3 in (³ He d)
3708.5.9	1,2,5			M	RS		$J : L = 1 \pm 3 \text{ III} (\Pi c, u).$
3733 3	1+,2+,3+			М			J^{π} : L=1+3 in (³ He,d).
3740 <i>3</i>	0^{+}				S	X	J^{π} : L(p,t)=0.
3753.2 ^c 4	6+	1.6 [#] ps 5	EFG I		S		J ^{π} : from stretched 946.7 γ E2 to 4 ⁺ , L(p,p')=(6); band assignment.
3776 2	3-				S	V X	J^{π} : from $L(\alpha, \alpha')=3$.
3782 2	2+			М	S		XREF: M(3775). J^{π} : from L(p,t)=2.

⁷⁰Ge Levels (continued)

E(level) [†]	J^{π}	T _{1/2}			XRE	F		Comments
3850 <i>3</i>					LM	S		
3856 2	$(2)^{-}$					S		J^{π} : from L=4+2(+0) in (³ He,d).
3870 2	3-					S	VX	J^{π} : from $L(\alpha, \alpha')=3$.
3890 <i>3</i>	$1^+, 2^+, 3^+$				М	S		J^{π} : from L=1+3 in (³ He,d).
3895.2 10	1				L	0	X	J^{π} : from 3895.1 γ D to 0 ⁺ .
3900.6 7	$(4^{-},5,6,7^{-})$			E				J^{π} : from 234 γ to 6 ⁻ , 484 γ to 5 ⁻ .
3903.9 7	+				М	RS	V	J^{π} : L=1+3 in (³ He,d), L(p,p')=(0).
								E(level): from $(p,p'\gamma)$.
3911 3						S		
3928 3	4+					S	X	J^{n} : from L(p,t)=4.
3941? 10	_	@				5		
3955.11 ^{<i>a</i>} 8	7-	17.0 ^{ee} ps <i>10</i>		EGI		QS	V	J ^{π} : J=7 from $\gamma(\theta)$ in (α ,2n γ), π from 288 γ M1+(E2) to 6 ⁻ .
3964 <i>3</i>	$(2)^{-}$				LM		V	J^{π} : from L=4+2(+0) in (³ He,d).
3976 <i>3</i>	$1^+, 2^+, 3^+$					S		J^{π} : from $L(\alpha, \alpha')=2$.
3990 <i>3</i>					M	S		
4003 2	.+					RS	V	
4024 3	4 ⁺				M	~	X	J^{π} : from L(p,t)=4.
40373	(4')			-		S	V	J^{α} : from $L(\alpha, \alpha') = (4)$.
4035.5 10				E	м	c		
4054 5	1+ 2+ 2+				n	с С		I^{π} : from $I = 1 + 3$ in $({}^{3}He d)$
4001 2	1, 2, 3 1+2+3+				м	3		$J_{-1} = 1 + 3 \text{ in } (110, 4).$
4086 3	1,2,3 4^+				n		vv	J^{π} : I (n t)-4
4096.1.20	3-					RS	V A	J^{π} : from $L(\alpha, \alpha')=3$.
4101.45 5	3-,4-		В			S		J^{π} : from 688 γ to 5 ⁻ and L(p,p')=3.
4103.5 ^{‡e} 5	6+			G				J^{π} : 1295 γ Q to 4 ⁺ ; band assignment in ⁶⁵ Cu(⁷ Li,
4110.2						6		$2n\gamma$), ⁶⁰ Ni(¹² C, $2p\gamma$) (2010Su05).
4119 3	2-				M	5		
4131 2	2 1-				M	5	V	J ^{**} : Irom L=4+2+0 in (^o He,d).
4144.7 20	1 + 2 + 2 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3				м	KS C	v	J . Hom $L(\alpha, \alpha) = 1$. $\pi \cdot I = 1 + 3$ in $(^{3}He d)$
4155 2	1,2,5				п	с С		J^{*} . L=1+3 III (* He,u).
4180 3	2+					5	x	$I^{\pi} \cdot I(nt) = 2$
1203 5 ^b 1	2 9+	8 [@] ns 2		FFC T	м	s	A	π : from 006 for E2 to 6 ⁺ : hand assignment
4212 3	$3^+ 4^+ 5^+$	0 ps 2		LIGI	M	5		J^{π} : from $J(n n')=4$
4226.3	2+,1,3					S	x	J^{π} : from L(p,t)=2.
4238 3	$1^+.2^+.3^+$				М	S	x	J^{π} : from L=1+3 in (³ He.d).
4243.11 15	, ,-		В					
4261 10	2+					S	Х	J^{π} : from L(p,t)=2.
4268 10	5-						V	J^{π} : from $L(\alpha, \alpha')=5$.
4282 10	$3^+, 4^+, 5^+$					S		J^{π} : from L(p,p')=4.
4287 <i>3</i>	$1^+, 2^+, 3^+$	_			М			J^{π} : from L(³ He,d)=1+3.
4299.3 <i>3</i>	7-	3 [@] ps 1		EGI		S	V	J ^{π} : from L(α, α')=7.
4330 <i>3</i>					LM	S	VX	L=4+2(+0) in (³ He,d); L(α, α')=(3+5), L(p,t)=0.
4352 <i>3</i>	$(2)^{-}$				М	Р	Х	J^{π} : from L=4+2(+0) in (³ He,d).
4356.7 7	1 ⁽⁻⁾ &					Р		B(E1)↑=0.0023 4
								B(E1) from ⁷⁰ Ge(pol γ, γ').
4357 10	+					S	X	L(p,t)=2 at 4357 20; $L(p,p')=4$ at 4357 10.
4365 10	(3 ⁻)					S	V	J^{π} : from L(α, α')=(3) for 4373 10.
4378 10						S		
4391 <i>3</i>	$1^+, 2^+, 3^+$				M	S		J^{π} : from L(³ He,d)=1+3.
4409 10	4+					S	V	J^{π} : from $L(\alpha, \alpha') = 4$.
4419 <i>3</i>	2-,3-,4-				M	S		J^{n} : from L(³ He,d)=4+2.

⁷⁰Ge Levels (continued)

E(level) [†]	J^{π}	T _{1/2}			XRE	F			Comments
4431.4 4	8+	0.4 [#] ps 2		EFG I					J^{π} : from 1134.6 γ E2 to 6 ⁺ and yield function in ${}^{68}Zn(\alpha, 2n\gamma)$
4447.5 8	1- &				M	Р			B(E1) = 0.0036 7 B(E1) from ⁷⁰ Ge(pol or or')
4448 2	2+						S	V X	J^{π} : from L(p,t)=2.
4473 2	4+				М		S	VX	J ^{π} : from L(p,t)=4. Other: L(α,α')=(3+5) is discrepant.
4520 3	2-,3-,4-				М		S		J^{π} : from L(³ He,d)=4+2.
4520.9 8	1-					Р			$B(E1)\uparrow<0.0005$
4534 10	(4^{+})						S	V	J^{π} : from $L(\alpha, \alpha') = (4)$.
4539 <i>3</i> 4546 <i>10</i>	0^{+}						s	X	J^{π} : from L(p,t)=0.
4552.1 10	(8)	$104^{@}$ ps +70-35		Т			5		J^{π} : from 253 γ to 7 ⁺ and 1253.2 γ to 6 ⁺ .
4555 <i>3</i>	(-)	I			M		S		
4574 3	(3.4^{+})		D		M		ç		I^{π} : log ft-6.4 from I^+ in a decay: I=5 unlikely
4377.10 13	(3,4)		Б				3		because of 2421γ to 2^+ level.
4606 10							S		-T 0
4613 3	$1^+, 2^+, 3^+$				M		S	V Y	J^{n} : from L(³ He,d)=1+3. I^{π} : L($\alpha \alpha'$)=(4)
4642.3	$(4)^{-}$				м		S	VЛ	$J^{\pi}: L(^{3}He, d) = 4+2(+0)$
4657 10	(=)							v	E(level): multiplet.
4675.39 21	(3,4 ⁺)		В				S		J^{π} : log <i>ft</i> =6.2 2 from 4 ⁺ in ε decay; J=5 or 4 ⁻ are unlikely because of 2968.1 γ to 2 ⁺ level.
4687 2	(2)-				LM		S		J^{π} : L=4+2(+0) in (³ He,d).
4716 10	(2^{+})						5	V X	I^{π} : from L (n t)=(2)
4727 10	(2)						S		•
4736 3	(2) -				M				
4768 3	(2) (4^+)				M			v	J ⁿ : $L({}^{\sigma}He,d)=4+2(+0).$ I ^{π} : from I ($\alpha \alpha'$)=(4)
4790.6 19	1 ⁽⁻⁾ &					Р			
4810 10	3-							V	J^{π} : from L(α, α')=3.
4820.2 ^{<i>c</i>} 11	(8 ⁺)			F					J^{π} : 1067 γ to 6 ⁺ ; band assignment.
4851.9 <i>4</i>	(8 ⁻) ^{<i>a</i>}	>3 [#] ps		EGI	M				J ^{π} : from (M1+E2) γ to 7 ⁻ .
4877 3	2-				M	_			J^{π} : L=4+2+0 in (³ He,d).
4886.6 13	3-				м	Р			I^{π} : from I ($\alpha \alpha'$)=3
4908.1^{d} 10	$(9^{-})^{a}$			E					$3 \cdot 10 \text{m L}(u, u) = 5.$
4915 10	(-)			-				V	
4935 3	1-							Х	J^{π} : from L(p,t)=1.
4940 10	3^{-}				м			V	J^{n} : from $L(\alpha, \alpha') = 3$.
4943 3	(2)				Г1 M				$J^{*}: L({}^{\circ}He,d)=4+2(+0).$
4985.0 10	(2)			I	п				$J : L = 4 \pm 2(\pm 0) \text{ III (116, u)}.$
5008 <i>3</i>	2^{-}				М			V	J ^{π} : from L=4+2+0 in (³ He,d); L(α, α')=(3).
5024 3	2^+			_				X	J^{π} : from L(p,t)=2.
5040 10	(3^{-})			I	M			V	$J'': L(\alpha, \alpha') = (3).$
5048.4 10 5050 3	(4) 0^+			T	т Т			Y	J ^T : from L(The, 0)=4+2+0; 1381.g γ to 2. I ^{π} : from L (n t)=0
5078 3	$1^+.2^+.3^+$				- M			V	J^{π} : L=1+3 in (³ He.d).
5102 3	1+,2+,3+				M				J^{π} : L=1+3 in (³ He,d).
5113 10	(3 ⁻)							V	$\mathbf{J}^{\pi}: \mathbf{L}(\alpha, \alpha') = (3).$

⁷⁰Ge Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	Σ	KREF		Comments
5129.6 7	1-&			Р		B(E1) \uparrow =0.0029 8 B(E1) from ⁷⁰ Ge(pol γ, γ').
5145 <i>3</i>	(3 ⁻)			М	V	J ^{π} : L(α, α')=(3); discrepant with L(³ He,d)=(4+2+0).
5184 <i>3</i>	0^{+}				Х	J^{π} : L(p,t)=0.
5195 10	(4+)		-		V	J^{π} : L(α, α')=(4).
5222.3 14	(3^{-})		E		V	I^{π} , $I(\alpha, \alpha') = (3)$
522710	(5)		FFC T		v	J. $L(u, u) = (5)$.
5242.7 11	$10^{1(-)}$		LIG I	р		$P(E_1) = 0.0022 A$
5205.4 8	1. ,			r		B(E1) = 0.0022.4 B(E1) from ⁷⁰ Ge(nol χ, χ')
5265.82 14			В			B(EI) noni Ge(por 7, 7).
5290 <i>3</i>	0^{+}				X	J^{π} : L(p,t)=0.
5299.2 4	9(-)		EGI			J ^{π} : from 1344.1 γ (E2) to 7 ⁻ , 1273 γ from 11 ⁽⁻⁾ ; inconsistent
5000 0	0+				v	with (6,7,8) from $\gamma(\theta)$ in (⁷ Li,2n γ).
5358 5 5370 11 5	0.		R		X	$J^{*}: L(p,t)=0.$
5403 3	0^{+}		Б		Х	J^{π} : L(p,t)=0.
5410 <i>3</i>					Х	
5435.5 ^{‡e} 11	8+		G			J ^{π} : from 1332 γ Q to 6 ⁺ ; band assignment in ⁶⁵ Cu(⁷ Li, 2n γ), ⁶⁰ Ni(¹² C, 2p γ) (2010Su05).
5441 <i>3</i>	(2^{+})				X	J^{π} : L(p,t)=(2).
5465.3 8	1- &			Р		B(E1)↑=0.0023 4
						B(E1) from ⁷⁰ Ge(pol γ, γ').
5467 3	0+				X	$\mathbf{J}^{\pi}: \mathbf{L}(\mathbf{p},\mathbf{t})=0.$
5512.5 10	1(-)&			Р		$B(E1)\uparrow=0.0019 3$
5520 7 5	(10)	5	EC T			B(E1) from ''Ge(pol γ, γ'). The fram electronic timing in ⁶⁸ 7 $r(\alpha, 2\pi\alpha)$, ⁶⁷ 7 $r(\alpha, \pi\alpha)$
	(10)	5 118 2	rg I			$J_{1/2}^{\pi}$: from electronic timing in "Zn(α ,2 $\eta\gamma$), "Zn(α , $\eta\gamma$). J^{π} : $T_{1/2}$ of this level suggests that the 1108 γ to 8 ⁺ may be M2, suggesting an assignment of J^{π} =10 ⁻ . However, level is assigned as side band member based on 8 ⁺ in ⁶⁴ Ni(¹² C, α 2 $\eta\gamma$), suggesting an assignment of J^{π} =10 ⁺ . Other: 9 ⁺ in ⁶⁵ Cu(⁷ Li,2 $\eta\gamma$), ⁶⁰ Ni(¹² C,2 $\eta\gamma$).
5552.5 [‡] 5	9(-)		G			J^{π} : 1253.2 γ Q to 7 ⁻ .
5876.9 7	1(-)&			Р		B(E1)↑=0.0014 4
	() P					B(E1) from $^{\prime 0}$ Ge(pol γ, γ').
5989.7 7	$1^{(+)}$			Р		
6000.911	(11-)		E			
6100.1 14	$(11)^{\circ}$		E	D		
6297.0 14	1 &			P		
6549 1 <i>14</i>	1		F	P		
6572.2 11	$11^{(-)}$		G			J^{π} : from 1273 γ O to 9 ⁽⁻⁾ .
6587 7 8	1 ⁽⁺⁾ &			Р		
6604.2 11	1		Е	•		
6636.6 15	1 &			Р		
6702.5 13	1 ⁽⁻⁾ &			Р		B(E1) \uparrow =0.0027 5 B(E1) from ⁷⁰ Ge(pol γ, γ').
6716.8 ^b 15	12^{+}		FG			J^{π} : Q 1474 γ to 10 ⁺ ; band assignment.
6779.7 11	(12)		F			
6786.1 ^d 17	(13 ⁻) ^{<i>a</i>}		Е			
7306.3 8	1 ⁽⁺⁾ &			Р		

⁷⁰Ge Levels (continued)

E(level) [†]	\mathbf{J}^{π}		XREF	Comments
7426.0 8	1 ⁽⁻⁾ &		Р	B(E1) \uparrow =0.0022 4 B(E1) from ⁷⁰ Ge(nol x, x')
7619.7 15	(14)	F		J^{π} : Q 840 γ to (12).
7753.5 10	1 ⁽⁻⁾ &		Р	B(E1) \uparrow =0.0026 6 B(E1) from ⁷⁰ Ge(pol γ, γ').
7767.8 <mark>b</mark> 18	14+	F		J^{π} : Q 1051 γ to 12 ⁺ , band assignment.
8058.1 ^d 20	(15 ⁻) ^{<i>a</i>}	Е		
8245.7 18	(16)	F		J^{π} : Q 626 γ to (14).
8283.7 15	1 ⁽⁺⁾ &		Р	
8878.5 14	1 &		Р	
9423.7 21	(18)	F		J^{π} : Q 1178 γ to (16).
9619.2 ^d 22	(17 ⁻) ^{<i>a</i>}	Е		
10269.7 <i>23</i>	(20)	F		J^{π} : 846 γ to (18).
11336.2 ^d 25	(19 ⁻) ^{<i>a</i>}	Е		
13173 ^d 3	(21 ⁻) ^{<i>a</i>}	Е		

[†] From a least-squares fit for levels connected by γ' s and from reaction data sets for others. [‡] This level was only reported in 2010Su05 in ⁶⁵Cu(⁷Li,2n γ), ⁶⁰Ni(¹²C,2p γ). [#] From DSAM in ⁶⁸Zn(α ,2n γ), ⁶⁷Zn(α ,n γ). [@] From RDM in ⁶⁸Zn(α ,2n γ), ⁶⁷Zn(α ,n γ) (1982Cl02).

[&] From mult in (pol γ, γ').

^{*a*} From (²⁸Si,4p γ) based on DCO, and level cascades.

^b Band(A): sequence based on g.s..

^c Band(B): sequence based on 2⁺, 1707.7 keV level.

^{*d*} Band(C): sequence based on 3⁻, 2562.05 keV level. ^{*e*} Band(D): sequence based on 0⁺, 1215.62 keV level.

						Adopted Levels, C	Gammas (continu	ied)	
						$\gamma(7)$	^{'0} Ge)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J	J_f^{π} Mu	lt. δ	α	$I_{(\gamma+ce)}$	Comments
1039.506	2+	1039.513 10	100	0.0 0	$E^{+} E2^{d}$		3.23×10 ⁻⁴		$\alpha(K)=0.000289 \ 4; \ \alpha(L)=2.96\times10^{-5} \ 5; \\ \alpha(M)=4.41\times10^{-6} \ 7; \ \alpha(N)=2.88\times10^{-7} \ 4 \\ B(E2)(W.u.)=20.8 \ 4 \\ E_{\nu}: \ from \ ^{70}Ga \ \beta^{-} \ decay.$
1215.621	0+	176.115 <i>13</i>	100 9	1039.506 2	2+ E2 ^f		0.0894		α (K)=0.0790 <i>11</i> ; α (L)=0.00902 <i>13</i> ; α (M)=0.001337 <i>19</i> ; α (N)=7.73×10 ⁻⁵ <i>11</i> B(E2)(W.u.)=48 7 E _y : from ⁷⁰ Ga β^- decay.
		1215.8 ^b		0.0 ()+ E0 f			1.00 4	$I_{(\gamma+ce)}$: for 100 transitions of 176γ from (p,p'γ) (1985Pa15).
1707.689	2+	492.09 5	4.9 4	1215.621 ()+ E2		0.00247		$\alpha(K)=0.00220 \ 3; \ \alpha(L)=0.000232 \ 4; \ \alpha(M)=3.45\times10^{-5} \ 5; \ \alpha(N)=2.20\times10^{-6} \ 3$ B(E2)(W.u.)=16 3 Mult : from RUL and decay pattern
		668.21 <i>4</i>	100 6	1039.506 2	2+ M1+	E2 -3.6 +11-6	9.80×10 ⁻⁴ 2		$ α(K) = 0.000875 21; α(L) = 9.08 \times 10^{-5} 22; α(M) = 1.35 \times 10^{-5} 4; α(N) = 8.74 \times 10^{-7} 20 B(E2)(W.u.) = 64 11; B(M1)(W.u.) = 0.0015 9 Mult.,δ: from RUL, δ and decay pattern. δ as evaluated by 1977Kr17: $
		1707.61 2	79.2 23	0.0 () ⁺ E2		2.87×10 ⁻⁴		$\alpha(K)=0.0001011 \ 15; \ \alpha(L)=1.025\times10^{-5} \ 15; \ \alpha(M)=1.529\times10^{-6} \ 22; \ \alpha(N)=1.007\times10^{-7} \ 15$ B(E2)(W.u.)=0.50 8 Mult.: from angular distribution in ⁶⁸ Zn(α ,2n γ), ⁶⁷ Zn(α , m) and BUL
2153.084	4+	445.6 10	0.7 4	1707.689 2	2 ⁺ [E2]		0.00338 6		$\alpha(K)=0.00301 5; \alpha(L)=0.000318 5;$ $\alpha(M)=4.74\times10^{-5} 8; \alpha(N)=3.00\times10^{-6} 5$ B(E2)(W n)=17 10
		1113.60 4	100 6	1039.506 2	2 ⁺ E2		2.77×10 ⁻⁴		$\alpha(K) = 0.000247 \ 4; \ \alpha(L) = 2.52 \times 10^{-5} \ 4; \alpha(M) = 3.76 \times 10^{-6} \ 6; \ \alpha(N) = 2.46 \times 10^{-7} \ 4 B(E2)(W.u.) = 25 \ 5 Mult.: from 68Zn(\alpha,2n\gamma), 67Zn(\alpha,n\gamma) and RUL. \delta = -0.1 \ 2 \text{ in } {}^{68}Zn(\alpha,2n\gamma), {}^{67}Zn(\alpha,n\gamma) \text{ gives} $
2156.744	2+	450.4 5	4.7 24	1707.689 2	2+ E2		0.00327		$\alpha(K)=0.00291 5; \alpha(L)=0.000308 5;$ $\alpha(M)=4.58\times10^{-5} 7; \alpha(N)=2.90\times10^{-6} 5$ Mult.: from (p,p' γ). Other: D from ${}^{65}Cu({}^{7}Li 2n\chi) {}^{60}Ni({}^{12}C 2n\chi)$
		941.10 <i>4</i>	62 <i>3</i>	1215.621 () ⁺ E2		4.09×10 ⁻⁴		$\alpha(K)=0.000366 \ 6; \ \alpha(L)=3.76\times10^{-5} \ 6; \ \alpha(M)=5.60\times10^{-6} \ 8; \ \alpha(N)=3.65\times10^{-7} \ 6$ Mult : from (n n'x)
		1117.28 4	100 6	1039.506 2	2 ⁺ E2		2.75×10^{-4}		$\alpha(K)=0.000245 \ 4; \ \alpha(L)=2.50\times 10^{-5} \ 4;$

 ∞

 $^{70}_{32}{
m Ge}_{38}$ -8

L

					Adop	oted Levels, Ga	ammas (continu	ed)						
	γ ⁽⁷⁰ Ge) (continued)													
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ	α	$I_{(\gamma+ce)}$	Comments					
2156.744	2+	2156.65 6	17.1 9	0.0 0+	[E2]		4.60×10 ⁻⁴		$\begin{aligned} &\alpha(M) = 3.73 \times 10^{-6} \ 6; \ \alpha(N) = 2.44 \times 10^{-7} \ 4 \\ &\text{Mult.: from } (\text{p,p}'\gamma). \\ &\alpha(K) = 6.55 \times 10^{-5} \ 10; \ \alpha(L) = 6.62 \times 10^{-6} \ 10; \\ &\alpha(M) = 9.88 \times 10^{-7} \ 14; \ \alpha(N) = 6.52 \times 10^{-8} \ 10 \end{aligned}$					
2307.0	0+	599.1 ^b	82 [@] 7	1707.689 2+	E2 ^b		1.36×10 ⁻³		$\alpha(K)=0.001218 \ 17; \ \alpha(L)=0.0001270 \ 18; \ \alpha(M)=1.89\times10^{-5} \ 3; \ \alpha(N)=1.216\times10^{-6} \ 17 \ B(E2)(W.u.)>4.8$					
		1091.3 ^b		1215.621 0+	E0 ^f			0.013 2	I _(γ+<i>ce</i>) : for 100 transitions of 1268 γ from (p,p' γ) (1985Pa15).					
		1267.5 ^b	100 [@] 7	1039.506 2+	E2 ^b		2.28×10 ⁻⁴		$\alpha(K)=0.000185 \ 3; \ \alpha(L)=1.89\times10^{-5} \ 3;$ $\alpha(M)=2.82\times10^{-6} \ 4; \ \alpha(N)=1.85\times10^{-7} \ 3$ B(E2)(W.u.)>0.14					
		2307.1 ^b		0.0 0+	$E0^{f}$			0.040 9	$I_{(\gamma+ce)}$: for 100 transitions of 1268 γ from (p,p' γ) and includes pair production (1985Pa15).					
2451.313	3+	294.60 <i>16</i> 297.88 8 743.62 <i>4</i>	0.37 <i>15</i> 2.4 <i>4</i> 100 <i>7</i>	2156.744 2 ⁺ 2153.084 4 ⁺ 1707.689 2 ⁺	M1(+E2)	+0.04 8	5.78×10 ⁻⁴ 9		$\alpha(K)=0.000517 \ 8; \ \alpha(L)=5.28\times10^{-5} \ 8;$					
									$\begin{aligned} &\alpha(M) = 7.89 \times 10^{-5} \ 12; \ \alpha(N) = 5.20 \times 10^{-7} \ 8 \\ &B(E2)(W.u.) < 0.5; \ B(M1)(W.u.) = 0.022 \ +14 - 5 \\ &Mult., \delta: \ D+Q \ from \ 6^5 Cu(^7 Li, 2n\gamma), \ ^{60}Ni(^{12}C, 2p\gamma), \\ &M1 + (E2) \ from \ RUL. \ Other: \ \delta = +3.5 \ 9 \ from \ \gamma(\theta) \\ ∈ \ (n, n'\gamma). \end{aligned}$					
		1411.86 <i>4</i>	39.3 <i>23</i>	1039.506 2+	M1+E2	-2.2 +5-3	2.18×10 ⁻⁴ 4		$\alpha(K)=0.0001463\ 22;\ \alpha(L)=1.487\times10^{-5}\ 22;\alpha(M)=2.22\times10^{-6}\ 4;\ \alpha(N)=1.460\times10^{-7}\ 22B(E2)(W.u.)=0.79\ +48-17;\ B(M1)(W.u.)=0.00022+15-10Mult: D+O from c(0) in (n n'a); M1+F2 from$					
									RUL. D+Q from $y(\theta)$ in (n,n y), M1+E2 from RUL.					
2534.95	2+	827.24 <i>10</i> 1319.6	32 <i>4</i> 9.5 10	1707.689 2 ⁺ 1215.621 0 ⁺					I _y : from (n,n' γ); I _y (827)/I _y (1495)=76 <i>10</i> /100 <i>10</i> , in (n,n' γ) which ratio is different from the adopted I _y from ⁷⁰ As ε decay					
		1495.43 5	100 8	1039.506 2+	M1+E2	-0.75	2.15×10 ⁻⁴		$\alpha(K)=0.0001274 \ 18; \ \alpha(L)=1.291\times10^{-5} \ 18; \alpha(M)=1.93\times10^{-6} \ 3; \ \alpha(N)=1.273\times10^{-7} \ 18 B(E2)(W.u.)=1.9 \ 7; \ B(M1)(W.u.)=0.0050 \ 18 Mult.,\delta: \ D+Q \ from \ \gamma(\theta) \ in \ (n,n'\gamma); \ M1+E2 \ from RUL.$					
2562.049	3-	1522.55 2	100	1039.506 2+	E1+M2 ^{<i>d</i>}	-0.11^{d} 10	3.42×10^{-4}		$\alpha(K)=6.7\times10^{-5} 6; \alpha(L)=6.8\times10^{-6} 6;$ $\alpha(M)=1.01\times10^{-6} 8; \alpha(N)=6.6\times10^{-8} 6$					

9

L

$\gamma(^{70}\text{Ge})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α	Comments
2806.25	4+	653.15 6	11.8 <i>14</i>	2153.084 4+	(M1)	7.66×10 ⁻⁴	B(E1)(W.u.)=0.00022 4 δ : other: -0.11 4 from $\gamma(\theta)$ in (n,n' γ); 0.02 5 from ⁶⁵ Cu(⁷ Li,2n γ). $\alpha(K)$ =0.000685 10; $\alpha(L)$ =7.01×10 ⁻⁵ 10; $\alpha(M)$ =1.048×10 ⁻⁵ 15; $\alpha(N)$ =6.90×10 ⁻⁷ 10 B(M1)(W.u.)=0.014 5
		1098.54 <i>4</i>	100 6	1707.689 2+	E2	2.84×10 ⁻⁴	Mult.: D from ⁶⁵ Cu(⁷ Li,2p γ), ⁶⁰ Ni(¹² C,2p γ) based on $\Delta J = 0$ dipole transition; $\Delta \pi$ =no from level scheme. $\alpha(K)=0.000254$ 4; $\alpha(L)=2.60\times10^{-5}$ 4; $\alpha(M)=3.88\times10^{-6}$ 6; $\alpha(N)=2.54\times10^{-7}$ 4 B(E2)(W.u.)=31 11 Mult.: from ⁶⁸ Zn(α ,2n γ), ⁶⁷ Zn(α ,n γ) and RUL; δ =-0.2 2 in ⁶⁸ Zn(α ,2n γ), ⁶⁷ Zn(α ,n γ) gives a large B(M3) which is excluded by RUL.
2887.4	0^+	730.8 [‡]	100 [‡] 10	2156.744 2+			
		1179.5‡	100 [‡] 15	1707.689 2+			
2945.0	2+	1237.3 ^b	100 ⁶	1707.689 2+			
3046.439	3+	239.90 10	1.1 3	$2806.25 4^+$	[M1 + E2]		
		393.11 4 880.72 <i>4</i>	14.0.0	$2431.515 5^{+}$	[M1+E2]		
		009.12 4 202 50 4	14.0 9	2130.744 2 2152.084 4 ⁺	$M1 + E2^{h}$		
		093.30 4 1229 76 4	10.0 5	2133.064 4	$M1 + E2^{h}$		
		1556.70 4	40 3	1/07.089 2*	$M1 + E2^{h}$		
3058 695	4+	2000.87 3	14.8 5	$2806\ 25\ 4^+$	$M1+E2^{10}$ [M1+E2]		
5050.075		496.74 4	15.3 10	2562.049 3-	[E1]	7.15×10^{-4}	$\alpha(K)=0.000639$ 9; $\alpha(L)=6.52\times10^{-5}$ 10; $\alpha(M)=9.72\times10^{-6}$ 14; $\alpha(N)=6.31\times10^{-7}$
							9
							B(E1)(W.u.)=0.000154
					h		Mult.: D from $\gamma(\theta)$ in 00 Cu(⁷ Li,2p γ), 00 Ni(12 C,2p γ).
		607.34 4	26.2 15	2451.313 3+	$M1+(E2)^n$	4.54 10-4	
		901.95 5	5.9 4	2156.744 21	[E2]	4.54×10 4	$\alpha(K)=0.000406\ 6;\ \alpha(L)=4.17\times10^{-5}\ 6;\ \alpha(M)=6.22\times10^{-5}\ 9;\ \alpha(N)=4.05\times10^{-7}\ 6$ B(F2)(Wu)=1.00.23
		905.61 2	67 4	2153.084 4+	[M1+E2]		D(D2)(W,U) = 1.00/2.5
		1350.90 6	2.8 3	1707.689 2+	[E2]	2.21×10^{-4}	α (K)=0.0001618 23; α (L)=1.647×10 ⁻⁵ 23; α (M)=2.46×10 ⁻⁶ 4; α (N)=1.614×10 ⁻⁷ 23
		2019.16 2	100.0 25	1039.506 2+	E2	4.02×10^{-4}	B(E2)(W.u.)=0.063 <i>16</i> α (K)=7.38×10 ⁻⁵ <i>11</i> ; α (L)=7.46×10 ⁻⁶ <i>11</i> ; α (M)=1.114×10 ⁻⁶ <i>16</i> ; α (N)=7.35×10 ⁻⁸ <i>11</i> B(E2)(Wu)=0.30 7
							Mult.: from ⁶⁸ Zn(α ,2n γ), ⁶⁷ Zn(α ,n γ) and RUL. M3 is ruled out because δ =+0.2 2 from ⁶⁸ Zn(α ,2n γ), ⁶⁷ Zn(α ,n γ) gives a large B(M3).
3105.7	(0 ⁺)	1397.9 [‡]	33 [‡] 10	1707.689 2+			
		2066.3‡	100 [‡] 7	1039.506 2+			
3180.6	2^{+}	2141.1 [‡]	100	1039.506 2+			

10

 $^{70}_{32}{
m Ge}_{38}$ -10

					Ado	pted Levels, (Gammas (cor	ntinued)	
						$\gamma(^{70}\text{Ge})$	(continued)		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α	Comments
3240.5	1+	3240.4	100	0.0	0+	M1		8.29×10 ⁻⁴	$ α(K)=3.21\times10^{-5} 5; α(L)=3.23\times10^{-6} 5; α(M)=4.82\times10^{-7} 7; α(N)=3.19\times10^{-8} 5 Eγ: from (γ,γ'). Mult.: D from γ(θ) in (γ,γ'), Δπ=yes from level scheme.$
3294.79	3+,4+	760.2 <i>5</i> 1587.17 <i>12</i> 2255.16 <i>11</i>	8.×10 ¹ 4 100 13 44 6	2534.95 1707.689 1039.506	2+ 2+ 2+				
3296.98	6+	490 ^g	0.80 ^g 20	2806.25	4^{+}	[E2]			
		1143.89 ^{&} 2	100 ^g	2153.084	4+	E2		2.62×10 ⁻⁴	α(K)=0.000232 4; α(L)=2.37×10-5 4; α(M)=3.53×10-6 5; α(N)=2.31×10-7 4 B(E2)(W.u.)=34 7 Mult.: From angular distribution in 68Zn(α,2nγ), 67Zn(α,nγ) and RUL. δ = 0.0 2 from γ(θ).
3314.5	1-	2274.6 [‡]		1039.506	2^{+}				
		3314.8		0.0	0+	E1		1.41×10 ⁻³	$ α(K)=2.09\times10^{-5} 3; α(L)=2.10\times10^{-6} 3; α(M)=3.14\times10^{-7} 5; α(N)=2.07\times10^{-8} 3 E_{\gamma}: from (γ,γ'). $ Mult.: D from γ(θ) in (γ,γ'), Δπ=yes from level scheme.
3334.8 3371.57	0 ⁺ to 3 ⁺ (3,4)	2295.3 [‡] 1218.57 <i>11</i> 2331.59 <i>24</i>	100 100 <i>21</i> 26 6	1039.506 2153.084 1039.506	2+ 4+ 2+				
3416.32	5-	357.72 5	59 4	3058.695	4+	E1 ^d		1.68×10 ⁻³	$\alpha(K)=0.001499\ 21;\ \alpha(L)=0.0001533\ 22;\ \alpha(M)=2.28\times10^{-5}\ 4;\ \alpha(N)=1.475\times10^{-6}\ 21$ B(E1)(W.u.)=0.000146\ 16 Mult.: From ⁶⁸ Zn(α ,2n γ), ⁶⁷ Zn(α , n γ) and RUL. δ =-0.06 3 in ⁶⁸ Zn(α ,2n γ), ⁶⁷ Zn(α , n γ) gives a large B(M2). δ : Other: 0.00 4 in ⁶⁵ Cu(⁷ Li, 2n γ), ⁶⁰ Ni(¹² C - 2m γ)
		854.6 4	97 6	2562.049	3-	E2		5.20×10 ⁻⁴	$\alpha(K) = 0.000464 \ 7; \ \alpha(L) = 4.78 \times 10^{-5} \ 7; \alpha(M) = 7.13 \times 10^{-6} \ 10; \ \alpha(N) = 4.64 \times 10^{-7} \ 7 B(E2)(W.u.) = 2.00 \ 21 Mult.: From 68Zn(\alpha, 2n\gamma), 67Zn(\alpha, n\gamma) and RUL. \delta = 0.02 \ 5 \text{ in } {}^{68}Zn(\alpha, 2n\gamma), {}^{67}Zn(\alpha, n\gamma) \text{ gives a} large B(M3).$
		1263.09 ^{&} 6	100 6	2153.084	4+	E1(+M2) ^d	-0.05 ^d 5	1.90×10 ⁻⁴ 4	$\alpha(K) = 8.98 \times 10^{-5} 24; \ \alpha(L) = 9.07 \times 10^{-6} 25; \alpha(M) = 1.35 \times 10^{-6} 4; \ \alpha(N) = 8.90 \times 10^{-8} 25 B(F1)(Wu) = 5.5 \times 10^{-6} 6; \ B(M2)(Wu) = 0.040 4$
3488.276	(3,4 ⁺)	953.30 7 1036.99 4	11.3 <i>11</i> 64 5	2534.95 2451.313	2+ 3+				D(D1)(W.u.)=5.5×10 0, D(W12)(W.u.)=0.040 4

11

L

					A	dopted Levels	s, Gammas (cont	tinued)	
						γ (⁷⁰ G	e) (continued)		
E _i (level)	J^{π}_i	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α	Comments
3488.276	(3,4+)	1331.58 7 1335.28 10 1780.52 2 2448.82 9	10.0 9 8.1 9 100.0 22 7.7 5	2156.744 2153.084 1707.689 1039.506	2^+ 4^+ 2^+ 2^+				
3570.44	(3) ⁻	1417.24 7 2531.7 2	100 <i>10</i> 6.0 <i>20</i>	2153.084 1039.506	$4^+ 2^+$				
3580.7	4+	1427.6 [‡]	100	2153.084	4+				
3631.5	$(2)^{+}$	2591.9 [‡]	100	1039.506	2^{+}				
3666.78	6-	250.46 ^{&} 5	100	3416.32	5-	M1(+E2) ^d	0.03 ^{<i>d</i>} +2-5	0.00727	α (K)=0.00648 <i>10</i> ; α (L)=0.000678 <i>10</i> ; α (M)=0.0001013 <i>15</i> ; α (N)=6.62×10 ⁻⁶ <i>10</i> B(E2)(W.u.)=0.85 7; B(M1)(W.u.)=0.040 3 δ : Other: +0.05 2 in ⁶⁵ Cu(⁷ Li,2n\gamma), ⁶⁰ Ni(¹² C,2p\gamma).
3669.4 3675.76	(5 ⁺) 4 ⁺	1218.1 ^{&} 1523.2 7 2636.20 7	100 100 <i>19</i> 43.6 <i>19</i>	2451.313 2153.084 1039.506	3+ 4+ 2+				
3753.2	6+	946.7 [#] 4	100#	2806.25	4+	E2		4.03×10 ⁻⁴	$\alpha(K)=0.000360 5; \alpha(L)=3.70\times10^{-5} 6;$ $\alpha(M)=5.52\times10^{-6} 8; \alpha(N)=3.60\times10^{-7} 5$ B(E2)(W.u.)=27 9 Mult.: Q from $\gamma(\theta)$ in ($\alpha,2n\gamma$), M2 excluded by comparison to RUL.
3895.2	1	3895.1	100	0.0	0+	D		1.07×10^{-3}	$\alpha(K) = 2.40 \times 10^{-5} 4; \ \alpha(L) = 2.41 \times 10^{-6} 4; \alpha(M) = 3.60 \times 10^{-7} 5; \ \alpha(N) = 2.39 \times 10^{-8} 4 E_{\gamma}: \ from \ (\gamma, \gamma'). Mult.: \ from \ \gamma(\theta) \ in \ (\gamma, \gamma').$
3900.6	(4 ⁻ ,5,6,7 ⁻)	234 484		3666.78 3416.32	6 ⁻ 5 ⁻				E_{γ} : From ⁴⁶ Ti(²⁸ Si, 4p γ). E_{γ} : From ⁴⁶ Ti(²⁸ Si, 4p γ).
3955.11	7-	288.33 ^{&} 5	100 ^{&} 10	3666.78	6-	M1(+E2) ^d	0.01 ^{<i>d</i>} 3	0.00512	α (K)=0.00457 7; α (L)=0.000476 7; α (M)=7.12×10 ⁻⁵ 11; α (N)=4.66×10 ⁻⁶ 7 B(E2)(W.u.)=0.081 12; B(M1)(W.u.)=0.045 7
		658.1 ^{&} 4	19 ^{&} 4	3296.98	6+	E1(+M2)	+0.02 5	3.67×10 ⁻⁴ 10	$ α(K)=0.000329 9; α(L)=3.34×10^{-5} 9; α(M)=4.98×10^{-6} 13; α(N)=3.25×10^{-7} 9 B(E1)(W.u.)=1.3×10^{-5} 3; B(M2)(W.u.)=0.056 13 Mult.,δ: D+Q from 65Cu(7Li,2nγ), Δπ= yes from level scheme. $
4053 3		1247#	100 [#]	2806 25	4^{+}				
4101 45	3- 4-	688@	100	3416 32	5-				
+101.+J	Ј,т	1045@		3058 605	5 4+				
		1295.24 6	100 11	2806.25	4+ 4+	Q			Mult.: Q from $\gamma(\theta)$ in ⁶⁵ Cu(⁷ Li, 2n γ), ⁶⁰ Ni(¹² C, 2p γ).

12

 $^{70}_{32}\text{Ge}_{38}$ -12

$\gamma(^{70}\text{Ge})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.	δ	α	Comments
4101.45	3-,4-	1539.29 <i>20</i> 1944.21 <i>16</i>	31 9 25 4	2562.049 2156.744	3^{-} - 2 ⁺				
4103.5	6+	1948.35 <i>11</i> 688 ^c	59 5 7.3 ⁰ 6	2153.084 3416.32	4 ⁺ 5 ⁻				
110010	0	1045 ^c	100 ^C 9	3058.695	4 ⁺	0			
		12950	14.8° 13	2806.25	4'	Q			Mult.: from angular distribution of oriented nuclei (ADO) radios in ${}^{65}Cu({}^{7}Li, 2n\gamma), {}^{60}Ni({}^{12}C, 2p\gamma)$ (2010Su05).
		1948 ^c	5.5 [°] 6	2156.744	2+				E_{γ} : 1948 γ populates 2 ⁺ state according to level scheme given in 2010Su05. Placement of 1948 γ is questionable due to ΔJ .
4203.5	8+	450 ^g	2.9 <mark>8</mark> 6	3753.2	6+	[E2]			
		906.6 [@] 4	100 ^g 10	3296.98	6+	E2		4.48×10 ⁻⁴	$\alpha(K)=0.000401 \ 6; \ \alpha(L)=4.12\times10^{-5} \ 6; \ \alpha(M)=6.14\times10^{-6} \ 9; \ \alpha(N)=4.00\times10^{-7} \ 6 \ B(F2)(Wu)=6.7 \ 17$
									Mult.: from angular distribution and linear-polarization data in ${}^{68}Zn(\alpha,2n\gamma)$, ${}^{67}Zn(\alpha,n\gamma)$ and RUL. $\delta = -0.2.2$ is ${}^{68}Zn(\alpha,2n\gamma)$, ${}^{67}Zn(\alpha,n\gamma)$ gives a large B(M3) value M3
									is not possible because of RUL.
4243.11		1196.66 15	100	3046.439	3+				
4299.3	7-	344.1 ^{&} 4	73 2 15	3955.11	7-	M1(+E2)	0.1 3	0.0034 6	$\alpha(K)=0.0030 \ 6; \ \alpha(L)=0.00031 \ 6; \ \alpha(M)=4.7\times10^{-5} \ 9; \ \alpha(N)=3.1\times10^{-6} \ 6$
									B(E2)(W.u.)=10 4; B(M1)(W.u.)=0.08 3 Mult δ : D+O from angular distribution data in
									65 Cu(7 Li,2n γ), $\Delta \pi$ = no from level scheme.
		1002.4 ^{&} 4	100 ^{&} 20	3296.98	6+	E1+M2	0.11 2	1.59×10 ⁻⁴ 4	$\alpha(K)=0.000142 \ 3; \ \alpha(L)=1.44\times10^{-5} \ 4; \ \alpha(M)=2.15\times10^{-6} \ 5; \ \alpha(N)=1.41\times10^{-7} \ 3$
									B(E1)(W.u.)=8.E-5 4
									Mult., δ : D+Q from angular distribution data in $^{65}Cu(^{7}\text{Li};2na)$, $\Delta \pi = vas$ from level scheme
4356.7	1(-)	4356.6 ^a 7	100	0.0	0^{+}	E1 ^a		0.00182	$\alpha(K) = 1.480 \times 10^{-5} 21$; $\alpha(L) = 1.483 \times 10^{-6} 21$;
100011	-		100	010	0	21		0.00102	$\alpha(M) = 2.21 \times 10^{-7} \ 3; \ \alpha(N) = 1.463 \times 10^{-8} \ 21$
4431.4	8+	677	3.4 10	3753.2	6+	[E2]			
		1134.6 [@] 4	100 9	3296.98	6+	E2		2.66×10^{-4}	α (K)=0.000236 4; α (L)=2.42×10 ⁻⁵ 4; α (M)=3.60×10 ⁻⁶ 5; α (N)=2.36×10 ⁻⁷ 4
									$B(E2)(W.u.)=44\ 22$
									Null: from angular distribution in ${}^{60}Zn(\alpha,2n\gamma)$, ${}^{67}Zn(\alpha,n\gamma)$ and RUL. $\delta = -0.1 2$ in ${}^{68}Zn(\alpha,2n\gamma)$, ${}^{67}Zn(\alpha,n\gamma)$ gives large B(M3) BUL rules out M3
4447.5	1-	4447.3 ^a 8	100	0.0	0^+	E1 ^{<i>a</i>}		0.00185	$\alpha(\text{K})=1.443 \times 10^{-5} \ 21; \ \alpha(\text{L})=1.446 \times 10^{-6} \ 21; \ \alpha(\text{M})=2.16 \times 10^{-7} \ 3: \ \alpha(\text{N})=1.426 \times 10^{-8} \ 20$
4520.9	1-	4520.7 ^a 8	100	0.0	0^{+}	E1 ^a		0.00188	$\alpha(K) = 1.414 \times 10^{-5} 20; \ \alpha(L) = 1.417 \times 10^{-6} 20;$
									$\alpha(M)=2.11\times10^{-7}$ 3; $\alpha(N)=1.398\times10^{-8}$ 20

13

$\gamma(^{70}\text{Ge})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α	Comments
4552 1	(8)	252 8 <mark>&</mark>	100	4200 3	7-				
4577.18	$(3,4^+)$	2419.88 24	86 15	2156.744	2+				
	(-))	2424.41 20	100 15	2153.084	4+				
4675.39	$(3,4^{+})$	2521.8 <i>3</i>	49 <i>13</i>	2153.084	4+				
		2968.1 <i>3</i>	100 15	1707.689	2^{+}				
4790.6	1(-)	4790.4 ^a 19	100	0.0	0^{+}	E1 ^{<i>a</i>}		0.00196	$\alpha(K)=1.317\times10^{-5} I9; \ \alpha(L)=1.319\times10^{-6} I9; \alpha(M)=1.97\times10^{-7} 3; \ \alpha(N)=1.302\times10^{-8} I9$
4820.2	(8^{+})	1067 <mark>8</mark>	100	3753.2	6+				
4851.9	(8-)	896.8 ^{&} 4	100	3955.11	7-	(M1+E2) ^e	0.4 ^e 2	3.98×10 ⁻⁴ 11	$\alpha(K)=0.000356 \ I0; \ \alpha(L)=3.64\times10^{-5} \ I1; \ \alpha(M)=5.43\times10^{-6}$ $I5; \ \alpha(N)=3.58\times10^{-7} \ I0$ B(E2)(W.u.)<4.9; B(M1)(W.u.)<0.01 St. Others + 1.4.2 in 65 Cru(7 Li 2m1) 60 Ni(12 C 2m1)
4886.6	1	4886 4 ^a 13	100	0.0	0^{+}	Da			0. Other: $+1.1.5$ III Cu($L1,2IIY$), IVI($C,2IIY$).
4008.1	(0^{-})	053#	100#	3055 11	7-	D			
4908.1	(9)	1020 0	100	2055 11	7 7-				
4983.0	(4-)	1029.9	100	3933.11	1				
5048.4	(4)	1381.6	100	3000.78	0 0 ⁺	F10		0.00007	(X) = 1,010,10-5,17,(X) = 1,014,10-6,17
5129.6	I	5129.44 /	100	0.0	01	El"		0.00207	$\alpha(\mathbf{K})=1.212\times10^{-7} \ 1/; \ \alpha(\mathbf{L})=1.214\times10^{-7} \ 1/; \ \alpha(\mathbf{M})=1.81\times10^{-7} \ 3; \ \alpha(\mathbf{N})=1.198\times10^{-8} \ 17$
5222.3		1169#	100 [#]	4053.3					
5242.7	10+	1039.2 ^{&}	100	4203.5	8+	E2		3.23×10^{-4}	$\alpha(K)=0.000289 \ 4; \ \alpha(L)=2.96\times10^{-5} \ 5; \ \alpha(M)=4.41\times10^{-6} \ 7; \ \alpha(N)=2.88\times10^{-7} \ 4$
									Mult.: Q from $\gamma(\theta)$ in 65 Cu(7 Li, 2n γ), 60 Ni(12 C, 2p γ), assumed E2 band member.
5263.4	1(-)	5263.2 ^a 8	100	0.0	0^{+}	E1 ^{<i>a</i>}		0.00211	$\alpha(K)=1.175\times10^{-5}$ 17; $\alpha(L)=1.177\times10^{-6}$ 17;
									$\alpha(M)=1.756\times10^{-7} 25; \alpha(N)=1.162\times10^{-8} 17$
5265.82		2219.34 14	100	3046.439	3+				
5299.2	9(-)	1344.1 [@] 4	100	3955.11	7-	(E2)			Mult.: from $\gamma(\theta)$ in ⁶⁵ Cu(⁷ Li,2n γ), ⁶⁰ Ni(¹² C,2n γ).
5370.11		1881.67 5	100 6	3488.276	$(3,4^{+})$				
		2325.42 18	21 2	3046.439	3+	_			
5435.5	8+	1332°	100 ^c	4103.5	6+	Q			Mult.: from angular distribution of oriented nuclei (ADO) radios in ${}^{65}Cu({}^{7}Li, 2n\gamma), {}^{60}Ni({}^{12}C, 2p\gamma)$ (2010Su05).
5465.3	1-	5465.1 ^{<i>a</i>} 8	100	0.0	0^+	E1 ^a		0.00216	$\alpha(\text{K})=1.124 \times 10^{-5} \ I6; \ \alpha(\text{L})=1.125 \times 10^{-6} \ I6; \ \alpha(\text{M})=1.678 \times 10^{-7} \ 24; \ \alpha(\text{N})=1.111 \times 10^{-8} \ I6$
5512.5	1 ⁽⁻⁾	5512.3 ^a 10	100	0.0	0^+	E1 ^a		0.00217	$\alpha(K)=1.112\times10^{-5}$ 16; $\alpha(L)=1.114\times10^{-6}$ 16; $\alpha(M)=1.661\times10^{-7}$ 24; $\alpha(N)=1.099\times10^{-8}$ 16
5539.7	(10)	1108.3 [@] 4	100 [@]	4431.4	8+	Q ^b		5.54×10 ⁻⁴	$\alpha(K) = 0.000495 \ 7; \ \alpha(L) = 5.10 \times 10^{-5} \ 8; \ \alpha(M) = 7.62 \times 10^{-6} \ 11; \ \alpha(N) = 5.03 \times 10^{-7} \ 7$ Mult.: from R(DCO) in ⁶⁴ Ni(¹² C, α 2n γ). From T _{1/2}

14

From ENSDF

						A	dopted Level	s, Gammas (continued)	
$\gamma(^{70}\text{Ge})$ (continued)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α	Comments	
								considerations, M2 is more likely. However, assignment to a band structure in ${}^{64}\text{Ni}({}^{12}\text{C},\alpha 2n\gamma)$ suggests E2 character. Other: D in ${}^{65}\text{Cu}({}^{7}\text{Li},2n\gamma)$, ${}^{60}\text{Ni}({}^{12}\text{C},2p\gamma)$.	
5552.5	9(-)	1253.2 [@] 4	100	4299.3	7-	Q	2.30×10 ⁻⁴	α (K)=0.000190 3; α (L)=1.94×10 ⁻⁵ 3; α (M)=2.89×10 ⁻⁶ 4; α (N)=1.89×10 ⁻⁷ 3 Mult.: Q from angular distribution of oriented nuclei (ADO) ratio in ⁶⁵ Cu(⁷ Li,2n γ), ⁶⁰ Ni(¹² C,2p γ).	
5876.9	1 ⁽⁻⁾	5876.6 ^a 7	100	0.0	0^{+}	E1 ^a	0.00227	$\alpha(K)=1.031\times10^{-5}$ 15; $\alpha(L)=1.032\times10^{-6}$ 15; $\alpha(M)=1.540\times10^{-7}$ 22; $\alpha(N)=1.019\times10^{-8}$ 15	
5989.7	1 ⁽⁺⁾	5989.4 ^a 7	100	0.0	0+	M1 ^a	1.66×10^{-3}	$\alpha(K) = 1.272 \times 10^{-5} \ 18; \ \alpha(L) = 1.276 \times 10^{-6} \ 18; \ \alpha(M) = 1.90 \times 10^{-7} \ 3; \ \alpha(N) = 1.262 \times 10^{-8} \ 18$	
6006.9		1155 [#]	100 [#]	4851.9	(8 ⁻)				
6160.1	(11^{-})	1252 [#]	100 [#]	4908.1	(9 ⁻)				
6297.0	1	6296.7 ^a 14	100	0.0	0+	D ^a			
6362.8	1	6362.5 ^a 8	100	0.0	0^{+}	D ^a			
6549.1		1641 [#]	100 [#]	4908.1	(9 ⁻)				
6572.2	11(-)	1273 [@]	100	5299.2	9(-)	Q		Mult.: from Angular Distribution of Oriented nuclei (ADO) ratio in 65 Cu(⁷ Li, 2n γ), 60 Ni(12 C, 2p γ) and level scheme.	
6587.7	$1^{(+)}$	6587.4 ^a 8	100	0.0	0^{+}	M1 ^a			
6604.2		1305 [#]	100 [#]	5299.2	9(-)				
6636.6	1	6636.3 ^a 15	100	0.0	0^{+}	D ^a			
6702.5	$1^{(-)}$	6702.2 ^a 13	100	0.0	0^{+}	E1 ^{<i>a</i>}			
6716.8	12+	1474 <mark>8</mark>	100	5242.7	10+	E2		Mult.: Q in ⁶⁵ Cu(⁷ Li, 2n γ), ⁶⁰ Ni(¹² C, 2p γ) and ⁶⁴ Ni(¹² C, α 2n γ), assumed E2 from placement in band structure.	
6779.7	(12)	1240 <mark>8</mark>	100	5539.7	(10)	Q		Mult.: from R(DCO) in 64 Ni(12 C, $\alpha 2n\gamma$).	
6786.1	(13 ⁻)	626 [#]	100 [#]	6160.1	(11^{-})				
7306.3	$1^{(+)}$	7305.9 ^a 8	100	0.0	0^{+}	M1 ^{<i>a</i>}			
7426.0	$1^{(-)}$	7425.6 ^a 8	100	0.0	0^{+}	E1 ^{<i>a</i>}			
7619.7	(14)	840 <mark>8</mark>	100	6779.7	(12)	Q		Mult.: from R(DCO) in 64 Ni(12 C, $\alpha 2n\gamma$).	
7753.5	$1^{(-)}$	7753.0 ^a 10	100	0.0	0^{+}	E1 ^a			
7767.8	14^{+}	1051 <mark>8</mark>	100	6716.8	12^{+}	E2		Mult.: Q from R(DCO) in 64 Ni(12 C, $\alpha 2n\gamma$), E2 from assumed band structure.	
8058.1	(15 ⁻)	1272 [#]	100 [#]	6786.1	(13 ⁻)				
8245.7	(16)	626 <mark>8</mark>	100	7619.7	(14)	Q		Mult.: from R(DCO) in 64 Ni(12 C, $\alpha 2n\gamma$).	
8283.7	$1^{(+)}$	8283.2 ^{<i>a</i>} 15	100	0.0	0^{+}	$M1^{a}$			
8878.5	1	8877.9 ^a 14	100	0.0	0^{+}	D^{a}			
9423.7	(18)	1178 <mark>8</mark>	100	8245.7	(16)	Q		Mult.: from R(DCO) in 64 Ni(12 C, $\alpha 2n\gamma$).	
9619.2	(17^{-})	1561 [#]	100 [#]	8058.1	(15 ⁻)				
10269.7	(20)	846 <mark>8</mark>	100	9423.7	(18)				
11336.2	(19 ⁻)	1717 <mark>#</mark>	100#	9619.2	(17 ⁻)				
13173	(21^{-})	1837 [#]	100 [#]	11336.2	(19 ⁻)				

From ENSDF

 $^{70}_{32}{
m Ge}_{38}$ -15

 $\gamma(^{70}\text{Ge})$ (continued)

[†] From ⁷²As ε decay, unless otherwise stated.

[‡] From $(n,n'\gamma)$. [#] From ⁴⁶Ti(²⁸Si, 4p γ).

^(a) From ⁶⁵Cu(⁷Li, 2n γ), ⁶⁰Ni(¹²C, 2p γ). ^(b) From ⁶⁸Zn(α ,2n γ), ⁶⁷Zn(α , n γ).

^{*a*} From ⁷⁰Ge(pol γ, γ').

^b From $(p,p'\gamma)$.

^c from ${}^{65}Cu({}^{7}Li,2n\gamma)$, ${}^{60}Ni({}^{12}C,2p\gamma)$ (2010Su05).

^{*d*} From angular distribution and linear-polarization data in 68 Zn(α ,2n γ), 67 Zn(α ,n γ). ^{*e*} From angular distribution in 68 Zn(α ,2n γ), 67 Zn(α ,n γ) and RUL.

^{*f*} From internal conversion data in $(p,p'\gamma)$.

^g From ⁶⁴Ni(¹²C, α 2n γ). ^h From $\gamma(\theta)$ in ⁷⁰As ε decay, cases of D+Q with large, non-zero values for δ have been assumed to be M1+E2 in character.

16

Level Scheme

Intensities: Relative photon branching from each level

 $^{70}_{32}{
m Ge}_{38}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{70}_{32}{
m Ge}_{38}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{70}_{32}{
m Ge}_{38}$

20

 $_{32}^{70}$ Ge₃₈-20

From ENSDF

 $^{70}_{32}\text{Ge}_{38}$ -20

⁷⁰₃₂Ge₃₈

 $^{70}_{32}{
m Ge}_{38}$