⁶⁵Cu(⁷Li,2nγ), ⁶⁰Ni(¹²C,2pγ) 1977Ro28,2010Su05

	Histo		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	G. Gürdal, E. A. Mccutchan	NDS 136, 1 (2016)	1-Jul-2016

1977Ro28: ⁶⁰Ni(¹²C, 2p γ), E(¹²C)=30-39 MeV; ⁶⁵Cu(⁷Ni, 2n γ), E(⁷Li)=16-19 MeV. Beams provided by ORNL EN tandem accelerator. Two Ge(Li) detectors used for γ -ray detection. Measured E γ , I γ , $\gamma\gamma$ coin (⁶⁰Ni(¹²C, 2p γ)), $\gamma(\theta)$, $\gamma\gamma(\theta)$, T_{1/2} by DSAM.

1978RoZS: ⁶⁴Cu(⁷Li,2n γ); in-beam measurement of linear polarization of γ rays using a Compton polarimeter.

2010Su05: ⁶⁰Ni(¹²C,2 $p\gamma$), E(¹²C)=45 MeV beam provided by the tandem accelerator at the Japan Atomic Energy Agency (JAEA). γ -rays were detected with an array of 15 HPGe detectors with BGO shields and three LOAX detectors without shields. The HPGe detectors were placed at angles of 47°, 72°, 90°, 105°, 144° and 147°. The LOAX detectors were placed at 36° and 108° with respect to the beam direction. Measured E γ , I γ , $\gamma\gamma$, ADO ratios (Angular Distribution from Oriented nuclei). The γ ray energies in 2010Su05 are consistently \approx 1 keV lower than those given in 1977Ro28 (and similarly those from other datasets). In order to combine the 2010Su05 E γ values with the results of other measurements, the evaluators have added 1 keV to all E γ values given in 2010Su05 and rounded to the nearest keV.

⁷⁰Ge Levels

Evaluators note: 6506.5 keV 11⁽⁻⁾, 7132.5 keV 13⁽⁻⁾ and 8404.5 keV 15⁽⁻⁾ levels were omitted in the Adopted Levels since the level energies could not be reproduced by the least-squares fit. The energy differences obtained were up to 14 keV.

E(level) [†]	J ^{πa}	T _{1/2} b	Comments
0.0 [@]	0+		
1039.6 [@] 3	2^{+}	>5 ^c ps	
1215.9 ^{‡#} 6	0^{+}		
1708.2 3	2+	>7 ^d ps	J^{π} : J=2 from $\gamma(\theta)$.
2153.6 [@] 4	4 ⁺ <i>e</i>	4 ^c ps 1	
2156.9 ^{‡#} 4	2^{+}		
2452.1 4	3+	,	J^{π} : J=1,2,3 from $\gamma(\theta)$.
2562.6 ^{‡&} 4	3-	2.3 ^d ps 5	J^{π} : J=1,2,3 from $\gamma(\theta)$.
2807.4 4	4+	,	J^{π} : J=1-4 from $\gamma(\theta)$.
3059.6 [#] 3	4+	1.0^{a} ps 5	J^{π} : J=1-4 from $\gamma(\theta)$.
3298.0 [@] 5	6+ <i>e</i>	2.6^{d} ps 6	
3417.1 ^{&} 4	5 ^{-e}	>14 ^d ps	
3667.6 5	6 ^{-e}		
3754.0 5	$(6)^{+}$		$J^{n}: J=2-6 \text{ from } \gamma(\theta).$
$3930.0 \ 3$	/ (+		$J : J = 5, 0, 7$ from $\gamma(0)$.
4104.5 ^{+*} 0	0^{+}		
4204.8 0	8.0		
4300.2 [∞] 5	6,/,8 8+		J [*] : J=5-9 from $\gamma(\theta)$. I_{τ} : I=4.8 from $\alpha(\theta)$. I=7.0 from yield function in 1077P c28
4852.8.6	8(-)		J : J=4-8 from $\gamma(\theta)$. J=7-9 from yield function in 1977K028. I ^{π} : I=6.8 from $\gamma(\theta)$
$5244.8^{\ddagger @}$ 11	10 ⁺		<i>s</i> · <i>s</i> -o,o nom <i>y</i> (<i>s</i>).
5300.1 6	9(-)		$J^{\pi}: J^{\pi} = 5.6^{-}.7^{-}.8^{-}$ from $\gamma(\theta): J = 6-8$ from yield function in 1977Ro28.
5436.3 ^{‡#} 12	8+		
5541.0 7	9 ⁺		
5553.4 ^{‡&} 6	9(-)		
6506.5 ^{‡&} 12	$11^{(-)}$		
6573.1 [‡] 12	$11^{(-)}$		
6720.9 ^{‡@} 15	12+		

⁶⁵Cu(⁷Li,2nγ), ⁶⁰Ni(¹²C,2pγ) 1977Ro28,2010Su05 (continued)

⁷⁰Ge Levels (continued)

E(level) [†]	Jπ a
7132.5 ^{‡&} 16	13 ⁽⁻⁾
8404.5 ^{‡&} 18	$15^{(-)}$

[†] From a least-squares fit to $E\gamma$'s by evaluators. $\Delta E\gamma = 1$ keV, if not specified.

[‡] Level reported only in 2010Su05.

[#] Band(A): Member of 0^+ band in 2010Su05.

[@] Band(B): Member of the g.s band in 2010Su05.

& Band(C): Member of band based on $3^{(-)}$ in 2010Su05.

^{*a*} From the Adopted Levels. Additional support from $\gamma(\theta)$ and linear polarization measurements are indicated.

^b From DSAM in 1977Ro28.

^c Corrected for precursor γ rays in 1977Ro28.

^d Not corrected for precursor γ rays in 1977Ro28.

^{*e*} 1978RoZS state J^{π} consistent with $\gamma(\theta)$ of 1977Ro28 and their linear polarization results, however, no details are given.

$\gamma(^{70}\text{Ge})$

ADO ratio are for the different combinations of detectors (2010Su05).

 γ -ray coincidence intensity ratios (ADO ratios): I(γ 1:47°, γ 2:all)/I(γ 1:105°, γ 2:all)=ADO(1),

 $I(\gamma 1:144^{\circ}, \gamma 2:all)/(\gamma 1:105^{\circ}, \gamma 2:all) = ADO(2)$ and $(\gamma 1:147^{\circ})/(\gamma 1:105^{\circ}, \gamma 2:all) = ADO(3)$. Expected ADO ratios are ≈ 1.3 for stretched quadrupole or $\Delta J=0$, dipole and 0.8 for stretched pure dipole transitions.

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^a	$\delta^{@}$	Ιγ′ ^{&}	Comments
176 [‡]		1215.9	0+	1039.6	2+			2.65 20	
250 [‡]		4204.8	8+	3956.0	7-			0.44 4	
250.4 4	9.2 9	3667.6	6-	3417.1	5-	D+Q	+0.05 2	3.0 3	Mult.: other: D from ADO(1)=0.85 4, ADO(2)=0.69 4, ADO(3)=0.70 4 (2010Su05).
251.9 4	0.5 2	3059.6	4+	2807.4	4+			2.9 2	
288.2 4	6.4 6	3956.0	7-	3667.6	6-	D+Q	+0.13 1	2.65 22	Mult.: other: D from ADO(1)=0.97 5, ADO(2)=0.83 4, ADO(3)=0.84 4 (2010Su05).
295 [‡]		2452.1	3+	2156.9	2^{+}			0.05 1	
298 [‡]		2452.1	3+	2153.6	4+			0.41 6	
344.1 <i>4</i>	1.1 2	4300.2	6 ⁻ ,7 ⁻ ,8 ⁻	3956.0	7-	D(+Q)	+0.1 3	0.72 6	Mult.: other: ΔJ=0 D from ADO(1)=1.27 9, ADO(2)=1.39 11, ADO(3)=1.40 10 (2010Su05).
357.1 4	3.3 7	3417.1	5-	3059.6	4+	D(+Q)	+0.00 4	1.48 12	Mult.: other: D from ADO(1)=0.87 5, ADO(2)=0.74 5, ADO(3)=0.82 5 (2010Su05).
405 [‡]		2562.6	3-	2156.9	2^{+}			0.17 2	
408 [‡]		2562.6	3-	2153.6	4+			0.12 2	
449 [‡]		2156.9	2+	1708.2	2+	D		0.35 4	Mult.: $\Delta J = 0$ dipole transition based on ADO(1)=1.28 20, ADO(2)=1.13 27, ADO(3)=1.40 23 (2010Su05).
451 [‡]		4204.8	8+	3754.0	$(6)^{+}$			0.16 1	
456 [‡]		3754.0	(6)+	3298.0	6+			0.19 2	

⁶⁵Cu(⁷Li,2nγ), ⁶⁰Ni(¹²C,2pγ) 1977Ro28,2010Su05 (continued)

 $^{70}_{32}\text{Ge}_{38}$ -3

						$\gamma(^{70}\text{Ge})$ ((continued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^a	$\delta^{@}$	Iγ'&	Comments
492 [‡] 496.7 <i>4</i>	0.3 1	1708.2 3059.6	2+ 4+	1215.9 (2562.6 3	0 ⁺ 3 ⁻	D		0.86 7 2.7 2	Mult.: ADO(1)=0.91 5, ADO(2)=0.74 5, ADO(3)=0.83 5 (2010Su05).
539 [‡] 607.2 <i>4</i>	0.8 2	3956.0 3059.6	7- 4 ⁺	3417.1 5 2452.1 5	5- 3+	D		0.09 2 4.8 4	Mult.: ADO(1)=1.01 5, ADO(2)=0.89 5, ADO(3)=0.94 5 (2010Su05).
626‡		7132.5	13(-)	6506.5	11(-)	Q		0.82 7	Mult.: ADO(1)=1.16 7, ADO(2)=1.30 8, ADO(3)=1.20 7 (2010Su05).
653 [‡]		2807.4	4+	2153.6	4+	D		0.98 11	Mult.: $\Delta J = 0$ dipole transition based on ADO(1)=0.90 6, ADO(2)=0.86 7, ADO(3)=0.86 6 (2010Su05)
658.1 4	1.2 2	3956.0	7-	3298.0	6+	D(+Q)	+0.02 5	0.97 9	Mult.: other: D from ADO(1)=0.78 5, ADO(2)=0.65 6, ADO(3)=0.65 5 (2010Su05)
668.1 4	5.1 5	1708.2	2+	1039.6 2	2+	Q		26.8 <i>23</i>	Mult.: $\Delta J = 0$ quadrupole transition based on ADO(1) = 1.01 5, ADO(2)=0.84 4, ADO(3) =0.93 5 (2010Su05)
679		4432.7	8+	3754.0 ((6)+			0.12 2	(20100003).
688 [‡]		4104.3	6+	3417.1	5-			0.24 2	
743.8 4	4.5 4	2452.1	3+	1708.2	2+	D(+Q)	+0.04 8	22.3 18	Mult.: other: D from ADO(1)=1.01 5, ADO(2)=0.85 4, ADO(3)=0.91 5 (2010Su05).
854 [‡]		2562.6	3-	1708.2	2+			0.25 3	
854.6 4	6.7 7	3417.1	5-	2562.6	3-	Q		2.76 22	Mult.: ADO(1)=1.25 7, ADO(2)=1.33 8, ADO(3)=1.30 8 (2010Su05).
883 [‡]		4300.2	6-,7-,8-	3417.1 5	5-	Q		0.77 6	Mult.: ADO(1)=1.28 <i>14</i> , ADO(2)=1.15 <i>16</i> , ADO(3)=1.34 <i>15</i> (2010Su05).
896.8 4	1.2 2	4852.8	8(-)	3956.0	7-	D+Q	+1.1 3	1.16 <i>10</i>	Mult.: other: D from ADO(1)=0.69 7, ADO(2)=0.75 10, ADO(3)=0.86 9 (2010Su05).
902 [‡]		3059.6	4+	2156.9 2	2+			1.47 12	
906.0 4	1.6 3	3059.6	4+	2153.6	4+	D		7.5 7	Mult.: $\Delta J = 0$ dipole transition based on ADO(1)=1.22 6, ADO(2)=1.10 6, ADO(3)=1.14 6 (2010Su05).
906.6 4	5.9 6	4204.8	8+	3298.0	6+	E2		8.2 7	Mult.: other: Q from ADO(1)=1.27 6, ADO(2)=1.17 6, ADO(3)=1.24 6 (2010Su05).
941 [‡]		2156.9	2+	1215.9 (0^{+}			1.52 12	
946.7 4	1.7 3	3754.0	(6)+	2807.4	4+	Q		1.04 9	Mult.: other: Q from ADO(1)=1.46 17, ADO(2)=1.67 23, ADO(3)=1.81 21 (2010Su05). Other: D+Q from 1977Ro28 based on δ =+0.38 8.
953 [‡]		6506.5	11 ⁽⁻⁾	5553.4	9(-)	Q		1.02 9	Mult.: ADO(1) =1.25 8, ADO(2)=1.69 12, ADO(3)=1.45 10 in 2010Su05
1002.4 4	1.5 3	4300.2	6 ⁻ ,7 ⁻ ,8 ⁻	3298.0	6+	D+Q	+0.11 2	0.98 9	Mult.: other: D from ADO(1)=0.86 6, ADO(2)=0.90 8, ADO(3)=0.76 6 (2010Su05).

Continued on next page (footnotes at end of table)

									_		
		$\gamma(^{70}\text{Ge})$ (continued)									
E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. ^a	$\delta^{@}$	Iγ' ^{&}	Comments		
1039.6 4	100	1039.6	2+	0.0 0	+	E2		100 10			
1040 [‡]		5244.8	10+	4204.8 8	+	Q		5.8 6	Mult.: ADO(1) = 1.21 6, ADO(2)=1.16 6, ADO(3)=1.16 6 (2010Su05).		
1045 ⁴ 1098.8 <i>4</i>	4.2 4	4104.3 2807.4	6+ 4+	3059.6 4 [°] 1708.2 2 [°]	+ +	Q		3.3 <i>3</i> 5.0 <i>5</i>	Mult.: ADO(1)=1.37 8, ADO(2)=1.29 8, ADO(2)=1.22 8 (2010\$::05)		
1108.3 4	1.7 3	5541.0	9+	4432.7 8	+	D		1.54 <i>16</i>	ADO(3)=1.52 8 (2010Su05). Mult.: ADO(1)=0.81 5, ADO(2)=0.57 5, ADO(3)=0.47 3 (2010Su05).		
1114.0 4	39 4	2153.6	4+	1039.6 2	+	Q		35 3	Mult.: ADO(1) = 1.30 7, ADO(2)=1.16 6, ADO(3) =1.20 6 (2010Su05).		
1117 [‡]		2156.9	2+	1039.6 2	+			4.8 4			
1134.6 4	5.4 5	4432.7	8+	3298.0 6	T	Q		2.9 3	Mult.: ADO(1)=1.07 6, ADO(2)=1.13 7, ADO(3)=1.15 6 (2010Su05).		
1144.5 4	18.0 <i>18</i>	3298.0	6+	2153.6 4	+	E2		9.4 9	Mult.: other: Q from ADO(1)=1.40 7, ADO(2)=1.53 8, ADO(3)=1.48 8 (2010Su05).		
1253.2 [‡] 4	0.4 1	5553.4	9(-)	4300.2 6	-,7-,8-	Q		1.16 <i>10</i>	E _γ : placement from 2010Su05. 1253γ is placed from a 4551-keV, J=(8) level in 1977Ro28. Mult.: ADO(1)=1.21 7, ADO(2)=1.52 10, ADO(3)=1.35 8 (2010Su05).		
1263.9 4	8.1 8	3417.1	5-	2153.6 4	+	E1(+M2)	+0.02 2	2.85 24	Mult.: other: D from ADO(1)=0.91 5, ADO(2)=0.89 5, ADO(3)=0.81 4 (2010Su05).		
1272‡		8404.5	15(-)	7132.5 13	3(-)			0.24 4	ADO(1)=1.39 8, ADO(2)=1.26 10, ADO(3)=1.17 8 for 1273 + 1273 unresolved doublet (2010Su05).		
1273 [‡]		6573.1	11 ⁽⁻⁾	5300.1 9	(-)	Q		0.42 4	Mult.: ADO(1)=1.39 8, ADO(2)=1.26 10, ADO(3)=1.17 8 for 1273 + 1273 unresolved doublet (2010Su05).		
1295 [‡]		4104.3	6+	2807.4 4	+	Q		0.49 4	Mult.: ADO(1)=1.27 <i>12</i> , ADO(2)=1.78 <i>23</i> , ADO(3)=1.28 <i>14</i> (2010Su05).		
1332 [‡]		5436.3	8+	4104.3 6	+	Q		0.47 5	Mult.: ADO(1) =1.39 <i>10</i> , ADO(2)=1.91 <i>15</i> , ADO(3)=1.45 <i>11</i> (2010Su05).		
. 1344.1 4	0.6 2	5300.1	9(-)	3956.0 7 ⁻	_	Q		0.88 8	Mult.: ADO(1)=1.25 20, ADO(2)=1.72 33, ADO(3)=1.89 25 (2010Su05).		
1351 [‡]		3059.6	4^+	1708.2 2	+			0.47 4			
1412.6 4	1.4 3	2452.1	3*	1039.6 2		D+Q		10.6 9	Mult.: ADO(1)=1.19 6, ADO(2)=1.07 6, ADO(3)=1.06 5 (2010Su05).		

65 Cu(7 Li,2n γ), 60 Ni(12 C,2p γ) 1977Ro28,2010Su05 (continued)

Continued on next page (footnotes at end of table)

65 Cu(7 Li,2n γ), 60 Ni(12 C,2p γ) **1977Ro28,2010Su05** (continued)

γ (⁷⁰Ge) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	$E_f = J_f^{\pi}$	Mult. ^a	$\delta^{@}$	Ιγ′ &	Comments
1476 [‡]		6720.9	12+	5244.8 10+	Q		0.26 2	Mult.: ADO(1) =1.39 9, ADO(2)=1.90 14, ADO(3)=1.66 11 (2010Su05).
1523.1 4	11 <i>I</i>	2562.6	3-	1039.6 2+	D(+Q)	+0.02 5	8.7 8	Mult.: other: D from ADO(1)=0.98 5, ADO(2)=0.99 5, ADO(3)=0.97 5 (2010Su05).
1708.3 4	5.7 6	1708.2	2^{+}	$0.0 \ 0^+$	E2		16.4 13	
1948 [‡]		4104.3	6+	2156.9 2+			0.18 2	E_{γ} : 1948γ populates 2156.9 keV 2 ⁺ state according to level scheme. Placement of 1948γ is guestionable due to ΔJ.
2020.5 4	2.2 4	3059.6	4+	1039.6 2+	Q		11.9 <i>10</i>	Mult.: ADO(1)=1.32 7, ADO(2)=1.34 7, ADO(3)=1.39 7 (2010Su05).
2156 [‡]		2156.9	2^{+}	$0.0 \ 0^+$			0.60 6	

[†] From 1977Ro28, except where noted.

[‡] From 2010Su05 with a 1 keV offset added by the evaluators. The results of 2010Su05 are consistently ≈ 1 keV lower than the E γ values reported by 1977Ro28 (and similarly those from other datasets) suggesting a problem with the energy calibration in 2010Su05. $\Delta E=1$ keV assumed for least-squares fitting.

[#] Relative photon intensity at $E(^{7}Li)=18$ MeV with $I\gamma(1040\gamma)=100$ (1977Ro28).

[@] From $\gamma(\theta)$ in 1977Ro28.

[&] From 2010Su05, normalized to $I\gamma(1040\gamma)=100$.

^{*a*} From $\gamma(\theta)$ (1977Ro28) and linear polarization data (1978RoZS), except where noted.

⁷⁰₃₂Ge₃₈

 $^{70}_{32}{
m Ge}_{38}$

⁶⁵Cu(⁷Li,2nγ), ⁶⁰Ni(¹²C,2pγ) 1977Ro28,2010Su05

⁷⁰₃₂Ge₃₈