## $^{64}$ Ni( $^{12}$ C, $\alpha$ 2n $\gamma$ ) 2016Ra08

| History         |                            |                   |                        |  |  |  |
|-----------------|----------------------------|-------------------|------------------------|--|--|--|
| Туре            | Author                     | Citation          | Literature Cutoff Date |  |  |  |
| Full Evaluation | G. Gürdal, E. A. Mccutchan | NDS 136, 1 (2016) | 1-Jul-2016             |  |  |  |

2016Ra08:  $E(^{12}C)=55$  MeV beam provided by the 15 UD Pelletron accelerator at the Inter-University Accelerator Centre, New Delhi. Target consisted of isotopically enriched <sup>64</sup>Ni with thickness  $\approx 1.5 \text{ mg/cm}^2$  on a 7 mg/cm<sup>2</sup> Au backing. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ ,  $\gamma\gamma(\theta)$ (DCO) using the Gamma Detector Array (GDA) consisting of 12 Compton-suppressed n-type HPGe detectors.

| <sup>0</sup> Ge | Levels |
|-----------------|--------|
|                 |        |

| $\frac{\text{E(level)}^{\dagger}}{0.0^{\#}}$ 1039.2 <sup>#</sup> 8<br>1706.8 <sup>&amp;</sup> 8<br>2152.1 <sup>#</sup> 11<br>2450.0 <sup>&amp;</sup> 10<br>2005.0 <sup>&amp;</sup> 11 | $   \begin{array}{c}     J^{\pi \ddagger} \\     0^{+} \\     2^{+} \\     2^{+} \\     4^{+} \\     3^{+} \\     4^{+}   \end{array} $ | E(level) <sup>†</sup><br>3295.1 <sup>#</sup> 12<br>3668.0 <sup>&amp;</sup> 14<br>3751.8 <sup>&amp;</sup> 13<br>4201.5 <sup>#</sup> 14<br>4429.0 <sup>@</sup> 14 | $\frac{J^{\pi \ddagger}}{6^{+}}$ (5 <sup>+</sup> )<br>6 <sup>+</sup><br>8 <sup>+</sup><br>8 <sup>+</sup><br>(0 <sup>+</sup> ) | $\frac{\text{E(level)}^{\dagger}}{5240.5^{\#} 17}$ 5538.0 <sup>@</sup> 17<br>6714.5 <sup>#</sup> 20<br>6778.0 <sup>@</sup> 20<br>7618.0 <sup>@</sup> 22<br>7765 c <sup>#</sup> 22 | $J^{\pi \ddagger}$<br>$10^{+}$<br>$10^{+}$<br>$12^{+}$<br>$12^{+}$<br>$14^{+}$<br>$14^{+}$ | $\frac{\text{E(level)}^{\dagger}}{8244.0^{@} 24}$ 9422 <sup>@</sup> 3 10268 <sup>@</sup> 3 | $J^{\pi \ddagger}$<br>$16^+$<br>$18^+$<br>$(20^+)$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------|
| $2805.0^{\circ}$ 11                                                                                                                                                                   | 4 <sup>+</sup>                                                                                                                          | 4818.8 <sup>&amp;</sup> 16                                                                                                                                      | (8 <sup>+</sup> )                                                                                                             | 7765.5 <sup>#</sup> 22                                                                                                                                                            | 14 <sup>+</sup>                                                                            |                                                                                            |                                                    |

<sup>†</sup> From least-squares fit to  $E\gamma$ , by evaluators, assuming  $\Delta E\gamma = 1$  keV.

<sup>‡</sup> As given in 2016Ra08; J from R(DCO) and band assignments, while parity are assigned based on literature and systematics.

# Band(A): g.s. band.

<sup>@</sup> Band(a): Side band based on 8<sup>+</sup>.

& Band(B): Band based on 2<sup>+</sup>.

## $\gamma(^{70}\text{Ge})$

R(DCO) defined as  $I\gamma(50^{\circ} \text{ or } 144^{\circ} \text{ gated by } \gamma \text{ at } 98^{\circ})/I\gamma(98^{\circ} \text{ gated by } \gamma \text{ at } 50^{\circ} \text{ or } 144^{\circ})$ . 2016Ra08 use only  $\Delta J=2$  transitions as gating transitions where expected R(DCO) ratios are  $\approx 1$  for pure quadrupole transitions and 0.5 for pure dipole transitions.

| Eγ                | $I_{\gamma}^{\dagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f  J_f^{\pi}$ | Mult. | Comments                                                                  |
|-------------------|------------------------|------------------------|----------------------|------------------|-------|---------------------------------------------------------------------------|
| 450               | 1.5 3                  | 4201.5                 | 8+                   | 3751.8 6+        |       |                                                                           |
| 490               | 0.8 2                  | 3295.1                 | 6+                   | 2805.0 4+        |       |                                                                           |
| 626               | 8.9 11                 | 8244.0                 | $16^{+}$             | 7618.0 14+       | Q     | Mult.: R(DCO)=1.17 22 (2016Ra08).                                         |
| 653               | 1.2 4                  | 2805.0                 | 4+                   | 2152.1 4+        |       |                                                                           |
| 667               | 11.9 6                 | 1706.8                 | 2+                   | 1039.2 2+        | Q     | Mult.: R(DCO)=0.94 7. 2016Ra08 state this is $\Delta J=0$ , Q transition. |
| 677               | 1.0 3                  | 4429.0                 | 8+                   | 3751.8 6+        | (Q)   |                                                                           |
| 743               | 3.4 <i>3</i>           | 2450.0                 | 3+                   | 1706.8 2+        | D     | Mult.: R(DCO)=0.72 13 (2016Ra08).                                         |
| 840               | 10.8 10                | 7618.0                 | 14+                  | 6778.0 12+       | Q     | Mult.: R(DCO)=1.09 18 (2016Ra08).                                         |
| 846               | 2.2 8                  | 10268                  | $(20^{+})$           | 9422 18+         |       |                                                                           |
| 906               | 51.1 12                | 4201.5                 | 8+                   | 3295.1 6+        | Q     | Mult.: R(DCO)=0.99 7 (2016Ra08).                                          |
| 947               | 6.9 5                  | 3751.8                 | 6+                   | 2805.0 4+        | Q     | Mult.: R(DCO)=1.01 3 (2016Ra08).                                          |
| 1039 <sup>‡</sup> | 183.4 <sup>‡</sup> 9   | 1039.2                 | $2^{+}$              | $0.0 \ 0^+$      | Q     | Mult.: R(DCO)=1.01 5 (2016Ra08).                                          |
| 1039 <sup>‡</sup> | 24.8 <sup>‡</sup> 9    | 5240.5                 | $10^{+}$             | 4201.5 8+        | Q     | Mult.: R(DCO)=1.12 11 (2016Ra08).                                         |
| 1051              | 11.7 <i>14</i>         | 7765.5                 | $14^{+}$             | 6714.5 12+       | Q     | Mult.: R(DCO)=1.17 12 (2016Ra08).                                         |
| 1067              | 3.3 5                  | 4818.8                 | $(8^{+})$            | 3751.8 6+        |       |                                                                           |
| 1098              | 9.3 7                  | 2805.0                 | 4+                   | 1706.8 2+        | Q     | Mult.: R(DCO)=1.19 10 (2016Ra08).                                         |
| 1109              | 23.1 12                | 5538.0                 | $10^{+}$             | 4429.0 8+        | Q     | Mult.: R(DCO)=0.98 12 (2016Ra08).                                         |
| 1113              | 134.9 9                | 2152.1                 | 4+                   | 1039.2 2+        | Q     | Mult.: R(DCO)=1.05 6 (2016Ra08).                                          |
| 1134              | 29.5 9                 | 4429.0                 | 8+                   | 3295.1 6+        | Q     | Mult.: R(DCO)=1.01 9 (2016Ra08).                                          |
| 1143              | 100                    | 3295.1                 | 6+                   | 2152.1 4+        |       |                                                                           |

## <sup>64</sup>Ni(<sup>12</sup>C, $\alpha$ 2n $\gamma$ ) 2016Ra08 (continued)

## $\gamma(^{70}\text{Ge})$ (continued)

| Eγ   | $I_{\gamma}^{\dagger}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_f$  | $\mathbf{J}_f^{\pi}$ | Mult. |
|------|------------------------|---------------|----------------------|--------|----------------------|-------|
| 1178 | 4.3 9                  | 9422          | 18+                  | 8244.0 | 16+                  | Q     |
| 1218 | 1.5 4                  | 3668.0        | $(5^{+})$            | 2450.0 | 3+                   |       |
| 1240 | 14.1 11                | 6778.0        | $12^{+}$             | 5538.0 | $10^{+}$             | Q     |
| 1411 | 3.4 4                  | 2450.0        | 3+                   | 1039.2 | $2^{+}$              |       |
| 1474 | 14.7 11                | 6714.5        | $12^{+}$             | 5240.5 | $10^{+}$             | Q     |
| 1707 | 4.7 5                  | 1706.8        | 2+                   | 0.0    | $0^{+}$              |       |

|                            | Comments |
|----------------------------|----------|
| Mult.: R(DCO)=0.94 25 (201 | 5Ra08).  |
| Mult.: R(DCO)=1.08 15 (201 | 6Ra08).  |
| Mult.: R(DCO)=1.13 12 (201 | 6Ra08).  |

<sup>†</sup> Relative intensities normalized to  $I\gamma(1143\gamma)=100$ . <sup>‡</sup> Multiply placed with intensity suitably divided.



320038



 $^{70}_{32}{
m Ge}_{38}$