⁷⁰Zn(p,nγ) 1984Fe03,1973Na17

	Histo	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	G. Gürdal, E. A. Mccutchan	NDS 136, 1 (2016)	1-Jul-2016

1984Fe03: E(p)=3, 3.5 and 4 MeV. Measured $E\gamma$, $I\gamma$ using two Ge(Li) detectors and E(ce), Ice using a superconducting-magnet transporter with Si(Li) detector and mini-orange Si(Li) electron spectrometers.

1975Hu06: E(p)=2.85, 3.4 MeV. Measured E γ , $\gamma(\theta,t)$ using coaxial Ge(Li) detector; deduced T_{1/2} of 879-keV level.

1974Ca14: E(p)=3.0 MeV. Measured E γ , I γ with Ge(Li) detector; T_{1/2} using Doppler Shift Attenuation Method (DSAM).

1973Na17: E(p)=1.7-3.2 MeV. Measured E γ , I γ , $\gamma(\theta)$ using Ge(Li) detector.

1971Ar12: E(p)=1.4-4.0 MeV. Measured E γ , $\gamma\gamma$ -coin, p γ -coin using Ge(Li) detector.

Others: 1966Re05, 1970Sa22, 1971Mi24, 1973Ca31, 1973KrZT, 1976KrZO.

The level scheme and spin assignments are based mainly on 1984Fe03 and 1973Na17.

⁷⁰Ga Levels

Results from $\gamma(\theta)$ analysis provided in the comments are from 1973Na17, except where noted.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0	1+		
508.1 <i>1</i>	2+		J^{π} : $\gamma(\theta)$ gives J=2.
651.1 <i>1</i>	$1^+, 2^+$		J^{π} : $\gamma(\theta)$ consistent with J=1 or J=2.
690.9 <i>1</i>	2-		J^{π} : $\gamma(\theta)$ consistent with J=1 or J=2.
878.6 2	4-	22.7 ns 5	$T_{1/2}$: from $\gamma\gamma(t)$ in 1975Hu06.
			J^{π} : $\gamma(\theta)$ consistent with J=4 (1975Hu06).
901.3 <i>1</i>	$1^+, 2^+, 3^+$		J^{π} : $\gamma(\theta)$ consistent with J=1-4.
995.4 <i>1</i>	2+		J^{π} : $\gamma(\theta)$ gives J=2.
1002.6 10			
1009.2 10			
1009.5 2	$1^+, 2^+, 3^+$		J^{π} : $\gamma(\theta)$ consistent with J=1,2,3.
1014.9 <i>1</i>	$1^+, 2^+, 3^+$		J^{π} : $\gamma(\theta)$ consistent with J=1,2,3.
1023.9 <i>1</i>	2+,3+		J^{π} : $\gamma(\theta)$ consistent with J=2,3.
1033.5 2	$(5)^{-}$		
1101.5 2	2-,3-,4-		J^{π} : $\gamma(\theta)$ consistent with J=1-4.
1135.4 <i>1</i>	1,2		J^{π} : $\gamma(\theta)$ consistent with J=1,2.
1140.4 <i>1</i>	1,2		J^{π} : $\gamma(\theta)$ consistent with J=1,2.
1203.8 2	2+	>220 fs	J^{π} : $\gamma(\theta)$ gives J=2.
1236.1	(6)-		- · · · ·
1244.5	2	>500 fs	J^{n} : $\gamma(\theta)$ gives J=2.
1253.1 2	3-,4-		J^{π} : $\gamma(\theta)$ consistent with J=1-4.
1258.7 2	1^{+} to 4^{+}		
1305.8 2			J^{n} : $\gamma(\theta)$ consistent with J=1-4.
1307.04	1+ 0+	170 6 50 05	
1312.1 3	1,2	1/0 is $+50-25$	$J^{*}: \gamma(\theta)$ consistent with J=1,2.
1336.6 2	2 2+		$J^{\Lambda}: \gamma(\theta)$ gives $J=2$.
1339.4 2	2		$J^{*}: \gamma(\theta)$ gives $J=2$.
1415.0 5	1+ 2+	0.27 m + 56 0	I^{π} , $\alpha(0)$ consistent with I-12
1445.9 2	1,2 1+2+	0.27 ps +50-9	J : $\gamma(0)$ consistent with $J=1,2$.
1501.2.5	$1^{+},2^{+}$		$J = \gamma(\theta)$ consistent with $J = 1, 2$. $I^{\pi}: \gamma(\theta)$ consistent with $I = 1, 2$
1518 3 3	$1^{+},2^{+}$		J^{π} : $\gamma(\theta)$ consistent with $J=1,2$.
1533.5 1	2+,2		J^{π} : $\gamma(\theta)$ consistent with J=2.3.
1553.9 6			J^{π} : $\gamma(\theta)$ gives J=2.
1621.0.5	$\frac{1}{1}$.2 ⁻		J^{π} : $\gamma(\theta)$ consistent with J=1.2.
1633.5 2	1.2.3		J^{π} : $\gamma(\theta)$ consistent with J=1,2,3.
1725.4 10	, ,-		

Continued on next page (footnotes at end of table)

70 Zn(p,n γ) 1984Fe03,1973Na17 (continued)

⁷⁰Ga Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	E(level) [†]	E(level) [†]
1793.9 10	$1^+, 2^+, 3^+$	1904.9 10	2190 2	2350 2
1807.4 10		1930.8 7	2214 2	2411 2
1823.2 15		2118 2	2231 2	
1865.0		2143 2	2320 2	

[†] From a least-squares fit to $E\gamma$, by evaluators.

[‡] From the Adopted Levels. Cases where supporting evidence for J^{π} assignments originates from this dataset are indicated in the comments. # From Doppler Shift Attenuation Method measurements in 1974Ca14, except where noted.

 α (K)exp normalized to Hager-Seltzer value of 5.86×10⁻² for the 187.6 γ assumed to be E2; estimated uncertainty in data 10-36% (1984Fe03).

ω

E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f} .	J_f^{π}	Mult.@	$\delta^{\&}$	α^{d}	$I\gamma'^{\#}$	Comments
508.1	2+	508.1 <i>1</i>	100	0.0 1+	ŀ	M1	_	0.00121	109 7	α (K)exp=9.7×10 ⁻⁰⁴ <i>12</i> (1984Fe03) Mult.: A ₂ =-0.27 <i>5</i> , A ₄ =+0.05 <i>5</i> (1973Na17). $\delta: 0.00 + l0 - 7$ from $\gamma(\theta)$ in 1973Na17
651.1	1+,2+	651.2 <i>1</i>	100	0.0 1+	F				37 <i>3</i>	Mult.: $A_2 = -0.20 5$, $A_4 = +0.05 5$ (1973Na17). δ : $-0.09 6$ or $+2.6 + 6-2$ if 651-keV level has J=2, from $\gamma(\theta)$ in 1973Na17.
690.9	2-	690.8 <i>1</i>	100	0.0 1+	F	E1			100 <i>10</i>	α (K)exp=2.8×10 ⁻⁰⁴ 10 (1984Fe03) Mult.: A ₂ =-0.31 8, A ₄ =+0.13 8 (1973Na17), A ₂ =-0.30 2, A ₄ =+0.05 (1975Hu06). δ : -0.07 +10-12 from $\gamma(\theta)$ in 1973Na17, 0.00 6 or 2.7 5 (1975Hu06)
878.6	4-	187.6 <i>3</i>	100	690.9 2-	-	E2			30 5	α(K) exp normalized to Hager Seltzer value for pure E2, α(K)=0.0586 (1984Fe03). Mult.: A2=+0.17 10, A4=+0.08 9 (1973Na17). δ: δ(O/Q)=0.00 +9-14 from γ(θ) in 1973Na17.
901.3	1+,2+,3+	393.1 <i>I</i>	100 9	508.1 2+	+	M1+E2	<0.7		14.1 13	α (K)exp=2.2×10 ⁻⁰³ 4 (1984Fe03) Mult.: A ₂ =+0.20 5, A ₄ =-0.02 5 (1973Na17). δ : from α (K)exp.
995.4	2+	902.5 ⁴⁴ 10 344.5 2	<13 50 <i>13</i>	651.1 1 ⁺	+,2+	M1			1.1 <i>1</i>	α (K)exp=2.6×10 ⁻⁰³ 8 (1984Fe03) Mult.: A ₂ =-0.27 9, A ₄ =+0.14 9 (1973Na17). δ : +0.1 2 from $\gamma(\theta)$ in 1973Na17.
		487.2 <i>1</i> 995.9 <i>3</i>	100 9 66 11	508.1 2 ⁺ 0.0 1 ⁺	+				<7.6 4.4 7	Mult.: $A_2 = -0.35 \ 3$, $A_4 = +0.07 \ 3 \ (1973Na17)$. δ : 0.34 9 or 1.2 2 from $\gamma(\theta)$ in 1973Na17.
1002.6		1002.8 10	100	$0.0 1^+$	+				<1	let summed intensity for 1000.2 and 1010.2 doublet
1009.2	1+,2+,3+	318.5 2	100	690.9 2 ⁻	_	D+Q			<19.8	α (K)exp=3.8×10 ⁻³ <i>10</i> (1984Fe03) Mult.: A ₂ =-0.10 <i>3</i> , A ₄ =-0.06 <i>3</i> (1973Na17). Mult.: M1 or E1+M2 from α (K)exp (1984Fe03). Decay scheme requires E1+M2.
1014.9	1+,2+,3+	1010.3 ^c 10 363.8 1	24 45	0.0 1 ⁺ 651.1 1 ⁺	+ +,2+	M1			4.8 <i>13</i> 4.0 2	Iγ': summed intensity for 1009.2 and 1010.3 doublet. α (K)exp=2.2×10 ⁻⁰³ 5 (1984Fe03) Mult.: A ₂ =-0.05 3, A ₄ =+0.03 3 (1973Na17).
1023.9	2+,3+	1014.4 ^{ce} 6 515.7 <i>1</i> 1023.3 5	100 100 6 10 6	$\begin{array}{ccc} 0.0 & 1^{+} \\ 508.1 & 2^{+} \\ 0.0 & 1^{+} \end{array}$	+ + +				<8.8 6.2 <i>13</i> 0.6 2	Mult.: A ₂ =-0.22 3, A ₄ =-0.02 3 (1973Na17).
1033.5	(5) ⁻	154.9 <i>1</i>	100	878.6 4-	-	D			7.7 4	α (K)exp=1.4×10 ⁻⁰² 5 (1984Fe03)

$\gamma(^{70}\text{Ga})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_f \qquad J_f^{\pi}$	Mult. [@]	$\delta^{\&}$	$I\gamma'^{\#}$	Comments
1101.5	$2^{-}3^{-}4^{-}$	410.6.2	100	690.9 2-	_		352	Mult : $\Delta_2 = \pm 0.21.16$ $\Delta_4 = -0.11.15$ (1973Na17)
1135.4	12,5,1	444 3 4	12 5	$690.9 2^{-}$			262	Mult: $A_2 = -0.03 \ \text{A}_4 = -0.16 \ \text{g} (1973\text{Na}17)$
1100.1	1,2	1135.4 1	100.5	$0.0 1^+$			17.3.28	Mult.: $A_2 = +0.08 I$, $A_4 = -0.03 2$ (1973Na17).
1140.4	1.2	632.3.2	49.5	$508.1 2^+$			4.5.4	Mult: $A_2 = +0.06 \ 8. \ A_4 = -0.06 \ 7. (1973Na17).$
111011	-,=	1140.4 7	100.5	$0.0 1^+$			11.8 20	Mult.: $A_2 = -0.03 \ 2$, $A_4 = +0.01 \ 2 \ (1973Na17)$.
1203.8	2^{+}	1203.8 2	100	0.0 1+	D+O	-0.10 7	<8.2	Mult.: $A_2 = -0.364$, $A_4 = -0.164$ (1973Na17).
1236.1	$(6)^{-}$	203.2^{e} 2	100	$1033.5(5)^{-}$			1.1.7	
1244.5	2	1244.6 1	100	0.0 1+	D+O	-0.054	10.7 20	Mult.: $A_2 = -0.37$ 6, $A_4 = -0.05$ 5 (1973Na17).
1253.1	$\frac{-}{3^{-}4^{-}}$	374 5 1	100.6	878.6 4-	M1		936	$\alpha(\text{K}) \exp[=2.1 \times 10^{-03} \text{ 5} (1984\text{Fe}03)]$
1200.1	5,1	571.51	100 0	070.0	1011		2.5 0	Mult: $A_{2}=-0.10$ 7. $A_{4}=-0.09$ 7 (1973Na17).
		561.7.4	12.6	690.9 2-			3.1.3	
1258 7	1^{+} to 4^{+}	234.8.1	100	$1023 9 2^+ 3^+$	M1		223	$\alpha(K) \exp(-7.3 \times 10^{-03} I7 (1984 \text{Fe}03))$
1250.7	1 10 1	608 5 ^{Ce} 5	100	651.1 1+2+	1011		<16	$u(\mathbf{r})exp=r.5x10$ $rr(10000000)$
1305.8		426.8.2	72 7	878.6 4-			343	Mult : $\Delta_{2} = -0.24.9$ $\Delta_{4} = -0.08.9$ (1973Na17)
1505.0		798 6 3	100 7	508 1 2+			516	111111111111111111111111111111111111
1307.0		1307.0.4	100 /	0.0 1+			344	
1312.1	$1^+ 2^+$	1312.1.3	100	$0.0 1^{+}$			11713	Mult : $A_{2} = -0.023$ $A_{4} = 0.003$ (1973Na17)
1336.6	2-,2	64572	100 4	$690.9 2^{-}$	D+O	+183	11.0 10	Mult: $A_2 = +0.254$ $A_4 = +0.063$ (1973Na17)
1000.0	-	1337.0.10	94	$0.0 1^+$	D+Q	+0.51.27	<0.8	Mult: $A_2 = +0.28$ 9, $A_4 = -0.15$ 10 (1973Na17)
1359.4	2+	708 6 ^{ce} 10	<i>, ,</i>	$651.1 1^+ 2^+$	DIQ	10.51 27	\$0.0	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
1557.1	-	851.1.2	100 13	$508.1 2^+$	D+O	-0.19.2	4.5.6	Mult: $A_{2}=+0.10 I$, $A_{4}=-0.01 I$ (1973Na17).
		1359.8 4	59.8	$0.0 1^+$	D+Q	+0.20.8	4.0.5	Mult: $A_2 = +0.034$, $A_4 = -0.075$ (1973Na17).
1413.0		904.9 3	100	508.1 2+			1.5 3	
1445.9	$1^{+}.2^{+}$	755.0 2	9 2	690.9 2-			4.5 4	
	,	794.6 10	2 2	651.1 1+.2+			1.0 3	
		1446.1 [°] 5	100 10	0.0 1+				Mult.: $A_2 = -0.01$ 2. $A_4 = -0.02$ 2 (1973Na17).
1456.4	$1^+.2^+$	432.3 ^c 8	25 7	1023.9 2+.3+			<1	
	,	554.3 5		901.3 1+.2+.3	+		<9.3	
		948.5 <i>3</i>	14 6	508.1 2+			1.4 3	E_{γ} : no placement given in Table 1 of 1973Na17, however, γ ray is placed in Figure 2.
		1456.6 ^C 8	100.7	0.0 1+				Mult.: $A_2 = -0.09 \ 2$, $A_4 = -0.03 \ 2 \ (1973Na17)$.
1501.2	$1^{+}.2^{+}$	1501.2 ^c 5	100	0.0 1+				$A_2 = +0.02$ 3, $A_4 = -0.04$ 3 (1973Na17).
1518.3	$1^{+}.2^{+}$	867.0.3	37.5	651.1 1+.2+			1.1 4	E_{γ} : no placement given in Table 1 of 1973Na17, however, γ
	- ,-	1510 56 6	100.10					ray is placed in Figure 2.
1522.5	2+	1518.70 0	100 10	0.0 1				$A_2 = +0.04 3, A_4 = -0.03 3 (19/3 \text{Na17}).$
1533.5	21	393.1° 1	12 11	1140.4 1,2				
		882.8 10	40.9	651.1 1,2	5.0	0.5.4		
		1533.2° 8	100.9	0.0 1+	D+Q	+0.5 4	60.10	Mult.: $A_2 = +0.345$, $A_4 = -0.126$ (19/3Na17).
1553.9	2*	1045.3 8	100 10	508.1 2+	D+Q		6.8 10	Mult.: $A_2 = +0.17/3$, $A_4 = -0.01/3$ (19/3Na17).
		1554 00 0	10 5			0.05.0		δ : =0.12 6 or +2.93 3 from $\gamma(\theta)$ in 19/3Na1/.
1(21.0	1- 0-	1554.3 8	49 6	$0.0 1^{+}$	D+Q	+0.25 9	0.6.2	Mult.: $A_2 = +0.00$ /, $A_4 = +0.10$ / (19/3Na1/).
1621.0	1,2	930.4 6	44	690.9 2 ⁻			0.6 2	
		969.5° 10	92.9	651.1 1 ⁺ ,2 ⁺				

4

From ENSDF

 $^{70}_{31}{
m Ga}_{39}$ -4

$\gamma(^{70}\text{Ga})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	$\mathrm{I}\gamma'^{\#}$	Comments
1621.0	1-,2-	1620.5 [°] 8	100 10	0.0	1+		Mult.: $A_{2}=+0.094$, $A_{4}=-0.075$ (1973Na17).
1633.5	1,2,3	982.2 ^C 10	57 7	651.1	$1^+, 2^+$	2.7 5	
		1125.4 2	100 10	508.1	2+	5.0 8	Mult.: $A_2 = -0.09 4$, $A_4 = +0.01 4$ (1973Na17).
		1633.1 ^C 10	28 6	0.0	1^{+}		Mult.: A ₂ =-0.00 5, A ₄ =-0.06 5 (1973Na17).
1725.4		1725.5 ^a 7	100	0.0	1^{+}		
1793.9	$1^+, 2^+, 3^+$	1794.2 ^a 7	100	0.0	1^{+}		
1807.4		1807.5 ^a 10	100	0.0	1^{+}		
1823.2		1823.2 ^{<i>a</i>} 15	100	0.0	1^{+}		
1865.0		1865.0 ^{<i>a</i>} 7	100	0.0	1+		
1904.9		1904.8 ^{<i>a</i>} 10	100	0.0	1+		
1930.8		1930.8 ^{<i>a</i>} 7	100	0.0	1+		
2118		2118 <mark>6</mark> 2		0.0	1^{+}		
2143		2143 ⁶ 2		0.0	1^{+}		
2190		2190 <mark>b</mark> 2		0.0	1^{+}		
2214		2214 <mark>b</mark> 2		0.0	1^{+}		
2231		2231 <mark>b</mark> 2		0.0	1^{+}		
2320		2320 ^b 2		0.0	1^{+}		
2350		2350 ^b 2		0.0	1^{+}		
2411		2411 ^b 2		0.0	1^{+}		

[†] From 1984Fe03, except where noted.

[‡] Relative photon branching from each level from 1973Na17. [#] From 1984Fe03, normalized to $I\gamma(691\gamma)=100$.

[@] Based on internal conversion data of 1984Fe03, except where noted.

[&] From $\gamma(\theta)$ in 1973Na17, except where noted.

^{*a*} From 1970Sa22. ^{*b*} From 1971Ar12. ^{*c*} From 1973Na17.

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*e*} Placement of transition in the level scheme is uncertain. ^{*x*} γ ray not placed in level scheme.

 70 Zn(p,n γ) 1984Fe03,1973Na17 Legend Level Scheme Intensities: Relative photon branching from each level $--- \rightarrow \gamma$ Decay (Uncertain) 2411 2411 2350 2350 _______ 2350 2320 ŝ 2231 2 2214 2143 2190 3/18 2143 2118 |007 8.0667 4 - 001 8:00-1-1-*6*7 <u>1930.8</u> 1904.9 8 1865.0 1823.2 6 1807.4 1/25 1+,2+,3+ 1793.9 163³.1 1725.4 $\begin{array}{r} 1,2,3\\ \hline 1^{-},2^{-}\\ \hline 2^{+}\\ \hline 2^{+}\\ \hline 1^{+},2^{+}\\ \hline 1^{+},2^{+}\\ \hline 1^{+},2^{+}\\ \hline 1^{+},2^{+}\\ \hline \end{array}$ 1633.5 1621.0 (<u>5</u> <u>_</u> ŝ 1553.9 -<u>&</u> 1533.5 6.9 1518.3 1501.2 35 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 - 8² 1456.4 1350 25, 15 20, 10 1445.9 0.27 ps +56-9 1413.0 2^{+} 1359.4 1,2 1140.4 $2^+, 3^+$ 1023.9 $1^+, 2^+, 3^+$ 901.3 690.9 $\frac{2^{-}}{1^{+},2^{+}}$ ¥ ¥ ¥ ł 651.1 ŧ 508.1 2^{+} 0.0 1^{+}

6

⁷⁰₃₁Ga₃₉