⁶⁸Zn(α,pnγ) 1977Mo01

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	G. Gürdal, E. A. Mccutchan	NDS 136, 1 (2016)	1-Jul-2016				

1977Mo01: $E(\alpha)=23-40$ MeV. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$, $\gamma(\theta)$, excitation function, $\gamma\gamma(t)$ using Ge(Li) detectors.

Others: 1971Ar12: ⁶⁷Zn(α ,p γ) with E(α)=14 MeV. Measured E γ , γ -p coincidences with coaxial Ge detector. With the exception of a 1263.0 γ , all γ -rays observed by 1971Ar12 were also observed in 1977Mo01. 1971Ar12 provides placements for only a few of these transitions which are consistent with the placements of 1977Mo01. Also 1975EbZZ, E(α)=13 MeV. Measured E γ with Ge(Li) detector. Observed 5 γ rays and their placement consistent with the results of 1977Mo01.

⁷⁰Ga Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0	1+		
508.5 10	2+		
691.0 <i>10</i>	2-		
879.1 <i>10</i>	4-	22 ns 2	
901.8 <i>10</i>	$1^+, 2^+, 3^+$	<1.4 ns	J^{π} : J=3,4 from $\gamma(\theta)$, absence of ground-state transition favors 4.
1034.2 10	(5) ⁻		J^{π} : $\gamma(\theta)$ consistent with J=5.
1086.7?		24 ns 4	E(level): difficulty in extracting information about the 185γ mixed with the strong 188γ makes this level questionable.
			J^{π} : $\gamma(\theta)$ suggests J=6.
1180.7 10	5		J^{π} : from $\gamma(\theta)$.
1234.3 11	(6)-		J^{π} : $\gamma(\theta)$ for 200 γ shows dipole character and yield function consistent with J=6.
1263.0			
1371.6 11	(7^{-})		J^{π} : $\gamma(\theta)$ of 138 γ shows dipole character and yield function consistent with J=7.
1523.4 15			
1538.8 11	(6)		J^{π} : J=(6,8) from $\gamma(\theta)$.
1687.7 11	6-		J^{π} : J=6,7,8 from $\gamma(\theta)$.
2601.5 11	(8)		J^{π} : $\gamma(\theta)$ and yield function favor J=8.
2651.6 15	-		
2886.3 11	(9)		J^{π} : from $\gamma(\theta)$ and yield function for 285 γ favor J=9 assuming J=8 for 2602 level.

[†] From a least-squares fit to $E\gamma$, by evaluators.

[‡] From the Adopted Levels. Additional support provided by the information from this dataset is included in the comments.

[#] From $\gamma\gamma(t)$ in 1977Mo01. For levels other than the 897-keV, 902-keV and 1087-keV levels, an upper limit on the half-life of $T_{1/2} < 4$ ns was found.

 $\gamma(^{70}\text{Ga})$

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult. [#]	δ#	Comments
137.6 1	26	1371.6	(7^{-})	1234.3 (6)-	$\overline{D(+Q)}$	0.0 1	Mult., δ : A ₂ =-0.29 3, A ₄ =-0.01 3 (1977Mo01).
146.8 <i>1</i>	5.3	1180.7	5	1034.2 (5)-	D+Q	+1.1 3	Mult., δ : A ₂ =+0.23 5, A ₄ =-0.2 1 (1977Mo01).
155.5 <i>1</i>	75	1034.2	$(5)^{-}$	879.1 4-	D(+Q)	0.0 1	Mult., δ : A ₂ =-0.27 4, A ₄ =-0.06 5 (1977Mo01).
167.4 <i>1</i>	2.3	1538.8	(6)	1371.6 (7 ⁻)	D(+Q)	+0.1 1	Mult., δ : A ₂ =-0.37 7, A ₄ =+0.25 8 (1977Mo01).
184.9 [@] 1	6	1086.7?		901.8 1+,2+,3+			$A_2 = +0.38 \ 21, A_4 = +0.2 \ 1 \ (1977 Mo01).$
188.1 <i>1</i>	90	879.1	4-	691.0 2-	Q		Mult.: A_2 =+0.26 4, A_4 =-0.03 6 (1977Mo01). δ : δ (O/Q)=0.0 1 (1977Mo01).
200.3 1	43	1234.3	(6)-	1034.2 (5)-	D(+Q)	0.0 1	Mult., δ : A ₂ =-0.23 <i>1</i> , A ₄ =-0.07 <i>1</i> (1977Mo01).
284.8 1	6.0	2886.3	(9)	2601.5 (8)	D(+Q)	0.0 2	Mult., δ : A ₂ =-0.22 <i>10</i> , A ₄ =-0.2 <i>1</i> (1977Mo01).
289.1 <i>1</i>		1523.4		1234.3 (6)-			
301.2 <i>I</i>	15	1180.7	5	879.1 4-	D(+Q)	0.0 1	Mult., δ : A ₂ =-0.22 3, A ₄ =-0.1 1 (1977Mo01).
304.3 1	5.7	1538.8	(6)	1234.3 (6)-	D+Q	+0.4 1	Mult., δ : A ₂ =+0.38 7, A ₄ =-0.1 <i>l</i> (1977Mo01).
316.1 <i>I</i>	9.0	1687.7	6-	1371.6 (7-)	D(+Q)	+0.05 10	Mult., δ : A ₂ =-0.25 5, A ₄ =+0.03 6 (1977Mo01).

Continued on next page (footnotes at end of table)

⁶⁸ Zn(α,pnγ) 1977Mo01 (continued)								
γ ⁽⁷⁰ Ga) (continued)								
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	Comments
337.1 <i>I</i>	3.8	1371.6	(7 ⁻)	1034.2	(5)-	Q		Mult.: $A_2 = +0.22$ 10, $A_4 = +0.04$ 10 (1977Mo01).
355.8 1	2.7	1234.3	(6)-	879.1	4-			δ: $\delta(O/Q)=0.0$ <i>I</i> . I_{γ} : from $I_{\gamma}(200\gamma)/I_{\gamma}(356\gamma)=0.94/0.06$ and $I_{\gamma}(200\gamma)=43$.
393.3 1	13	901.8	1+,2+,3+	508.5	2+	Q		Mult.: A_2 =+0.25 5, A_4 =+0.03 7 (1977Mo01). δ : δ (O/O)=0.16 20 (1977Mo01).
508.5 <i>1</i>		508.5	2+	0.0	1^{+}			
691.0 <i>1</i>	100	691.0	2-	0.0	1^{+}			
1229.9 <i>1</i>	20	2601.5	(8)	1371.6	(7 ⁻)	D(+Q)	0.0 2	Mult., δ : A ₂ =-0.23 13, A ₄ =+0.02 20 (1977Mo01).
1263.0 15		1263.0		0.0	1^{+}			E_{γ} : from 1971Ar12.
1280.0 <i>1</i>		2651.6	-	1371.6	(7^{-})			

[†] From 1977Mo01, except where noted.

[‡] From 1977Mo01, given relative to Iγ(691γ)=100.
[#] From γ(θ) in 1977Mo01.
[@] Placement of transition in the level scheme is uncertain.

