70 Ni β^- decay 2004Va08

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	G. Gürdal, E. A. Mccutchan	NDS 136, 1 (2016)	1-Jul-2016					

Parent: ⁷⁰Ni: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=6.0$ s 3; $Q(\beta^-)=3762.5$ 24; $\%\beta^-$ decay=100.0

⁷⁰Ni activity produced in proton-induced fission of natural uranium, with E(p)=30 MeV. Fission fragments first thermalized and neutralized in a buffer gas then selectively extracted through resonant laser ionization and electromagnetic separation using the LISOL separator. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$, $\beta\gamma$, and $\gamma(t)$ using two HPGe detectors and a thin plastic ΔE scintillator. Subset of results presented in 2004Va07. See also 2002VaZX, thesis.

A total energy release of 3520 keV 180 is calculated for this decay scheme using the RADLST code, which can be compared to the total Q value of 3762.5 keV 24. Due to the \approx 1.8 MeV gap in energy between the highest observed excited level and the Q value and also the approximation that has gone into the normalization of the decay scheme, beta-decay feeding intensities and log *ft* values should be considered approximate.

 α : Additional information 1.

 α : Additional information 2.

⁷⁰Cu Levels

E(level) [†]	J ^π ‡	T _{1/2} ‡	Comments
0.0	6-	44.5 s 2	
101.1 3	3-	33 s 2	E(level): confirmed in high-precision mass measurement where 100.7 keV 26 was deduced (2004Va07).
228.5 4	4^{-}		
242.6 5	1+	6.6 s 2	E(level): confirmed in high-precision mass measurement where 242.0 keV 27 was deduced (2004Va07).
320.7 5	(2^{+})		
368.9 5	(2^{-})		
628.1?			
697.7 5	(1^{+})		
706.4?			
938.8 5			
1278.4 5	(1^{+})		
1520.4 5	(1^+)		
1980.1 6	(1^{+})		

[†] From a least-squares fit to $E\gamma$, by the evaluators.

[‡] From the Adopted Levels.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(1782.4 25) (2242.1 25) (2484.1 25) (3064.8 25) (3519.9 25)	1980.1 1520.4 1278.4 697.7 242.6	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \approx 1.2 \\ \approx 4.6 \\ \approx 17 \\ \approx 5.7 \\ \approx 71 \end{array}$	≈ 4.8 ≈ 4.6 ≈ 4.2 ≈ 5.1 ≈ 4.3	av $E\beta$ =711.3 <i>12</i> av $E\beta$ =924.9 <i>12</i> av $E\beta$ =1038.8 <i>12</i> av $E\beta$ =1315.0 <i>12</i> av $E\beta$ =1533.4 <i>12</i> I β ⁻ : from comparison of observed total activities of ⁷⁰ Ni parent with the 6.6-s ⁷⁰ Cu daughter activities (2004Va08). The latter was derived using absolute I _Y (885 _Y)=94%
				2 from 6.6-s ⁷⁰ Cu 1 ⁺ decay and assuming no ground state β feeding in the 6.6-s ⁷⁰ Cu 1 ⁺ decay.

[†] Absolute intensity per 100 decays.

⁷⁰Ni β^- decay 2004Va08 (continued)

$\gamma(^{70}\mathrm{Cu})$

Iγ normalization: from $\Sigma(I(\gamma+ce)$ to 243- and 101-keV isomers)=29%. %Iβ to 242-keV level = 71 was derived by 2004Va08 from comparison of observed total activities of ⁷⁰Ni parent with the 6.6-s ⁷⁰Cu daughter activities. The latter was derived using absolute Iγ(885γ)=94% 2 from 6.6-s ⁷⁰Cu 1⁺ decay and assuming no ground state β feeding in the 6.6-s ⁷⁰Cu 1⁺ decay.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α	Comments
78.3 1	34 5	320.7	(2^+)	242.6	1+	[M1]	0.1042	$\alpha(K)=0.0931$ 14; $\alpha(L)=0.00968$ 14;
126.5 2	4 3	368.9	(2 ⁻)	242.6	1+	[E1]	0.0270	α (M)=0.001362 20; α (N)=4.02×10 ⁻⁵ 6 α (K)=0.0242 4; α (L)=0.00241 4; α (M)=0.000336 5: α (N)=9.78×10 ⁻⁶ 15
127.4 2	3.3 18	228.5	4-	101.1	3-	[M1]	0.0281	$\alpha(\mathbf{M}) = 0.000556 \ \text{s}, \ \alpha(\mathbf{M}) = 1.000058 \ \text{s};$ $\alpha(\mathbf{K}) = 0.0252 \ \text{s}; \ \alpha(\mathbf{L}) = 0.00258 \ \text{s};$ $\alpha(\mathbf{M}) = 0.000264 \ \text{s}; \ \alpha(\mathbf{M}) = 1.084 \times 10^{-5} \ \text{s};$
140.4 6	2.9 16	368.9	(2 ⁻)	228.5	4-	[E2]	0.169 4	$\alpha(M) = 0.000304 \ b, \ \alpha(N) = 1.034 \times 10^{-1} \ a(M) = 0.0166 \ 4;$ $\alpha(M) = 0.00230 \ 5; \ \alpha(N) = 5.96 \times 10^{-5} \ 13$
232.8 <mark>#&</mark>	2.0 13	938.8		706.4?				
267.8 4	3.6 7	368.9	(2 ⁻)	101.1	3-	[M1]	0.00426	α (K)=0.00382 6; α (L)=0.000385 6; α (M)=5.42×10 ⁻⁵ 8; α (N)=1.639×10 ⁻⁶ 24
339.6 1	25 4	1278.4	(1^{+})	938.8				
377.2 1	21 4	697.7	(1^{+})	320.7	(2^{+})			
385.7 <mark>#&</mark> 5	9.6 16	628.1?		242.6	1^{+}			
385.7 ^{#&} 5	2.0 13	706.4?		320.7	(2^{+})			
455.1 <i>1</i>	27 4	697.7	(1^{+})	242.6	1+			
581.1 2	3.5 9	1278.4	(1^+)	697.7	(1^{+})			
618.4 2	14 4	938.8		320.7	(2^{+})			
650.1 ^{#& 2}	9.6 16	1278.4	(1^{+})	628.1?				
696.1 <i>1</i>	10.1 16	938.8		242.6	1^{+}			
956.9 <i>3</i>	2.8 15	1278.4	(1^{+})	320.7	(2^{+})			
1035.6 2	100 7	1278.4	(1^{+})	242.6	1^{+}			
1152.3 4	63	1520.4	(1+)	368.9	(2-)	[E1]	1.14×10^{-4}	$\alpha(K)=7.98\times10^{-5} \ l2; \ \alpha(L)=7.83\times10^{-6} \ l1; \\ \alpha(M)=1.100\times10^{-6} \ l6; \ \alpha(N)=3.37\times10^{-8} \\ 5$
1277.6 2	30 5	1520.4	(1^{+})	242.6	1^{+}			-
1611.2 3	92	1980.1	(1+)	368.9	(2 ⁻)	[E1]	3.95×10 ⁻⁴	α (K)=4.51×10 ⁻⁵ 7; α (L)=4.41×10 ⁻⁶ 7; α (M)=6.20×10 ⁻⁷ 9; α (N)=1.90×10 ⁻⁸ 3

[†] From 2004Va08. I γ are given relative to I γ (1036 γ)=100.

[‡] From the Adopted Levels.

[#] Ordering of the 650γ -386 γ cascade and the 233γ -386 γ cascade could not be determined. A reverse ordering resulting in the 628-keV level moving to 892.5 keV and the 706-keV level moving to 553.5-keV is also possible.

[@] For absolute intensity per 100 decays, multiply by ≈ 0.129 .

& Placement of transition in the level scheme is uncertain.

⁷⁰Ni β^- decay 2004Va08

