Adopted Levels, Gammas

	Histo	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	G. Gürdal, E. A. Mccutchan	NDS 136, 1 (2016)	1-Jul-2016

 $Q(\beta^{-}) = -10480 SY; S(n) = 13390 40; S(p) = 2280 15; Q(\alpha) = -1825 SY$ 2012Wa38

 $\Delta Q(\beta^{-})=200; \ \Delta Q(\alpha)=16 \ (2012Wa38).$

S(2n)=29130 310; S(2p)=7109 15 (2012Wa38).

1978A123: ⁵⁸Ni(¹⁴N,2n) with E(¹⁴N)=44 MeV; plastic scintillation detector used to detect β rays; measured T_{1/2}.

1981Vo04: from 600 MeV proton-irradiated Nb powder target; on-line mass separator; $4\pi \beta$ -detector; measured T_{1/2} = 2.2 s 2 (from $\beta(t)$). Authors compared their measurement with literature value (1978Al23) and suggested isomerism might exist.

1988Bu12: ⁵⁸Ni(¹⁴N,2n) with E(¹⁴N)=42.5 MeV; rapid-transport target system with β -ray range telescope; measured T_{1/2}. 2002Lo13: fragmentation of ⁷⁸Kr beam at 73 MeV/nucleon using LISE/SISSI-ALPHA spectrometer at GANIL and identified

through ΔE and TOF measurements. A four-element Si telescope (ΔE detector, position sensitive detector, double-sided Si strip detector as the implantation device and a Si(Li) detector as a veto for lighter ions). Measured $T_{1/2}$ from time correlation between ion implantation and β events in the silicon strip detector. Large $\Delta T_{1/2}$ due to the low production rate of ⁷⁰Br.

2014Ro14: produced by fragmentation of a ⁷⁸Kr beam on a natural Ni target with E(⁷⁸Kr)=70 MeV/nucleon. Separated using the LISE3 spectrometer and identified using Δ E-TOF measurements. A silicon telescope was used. Measured T_{1/2} from time correlation between ion implantation and β events in the silicon strip detector.

1999Bo28: using ⁵⁸Ni(¹⁶O,p3n γ) reaction, the gamma rays and level scheme were assigned to ⁷⁰Br, but in the erratum the authors have retracted the assignment to ⁷⁰Br.

 α : Additional information 1.

⁷⁰Br Levels

Cross Reference (XREF) Flags

A RIE UECay	Α	70 Kr ε decay	
-------------	---	--------------------------------	--

В

 ${}^{9}\text{Be}({}^{71}\text{Br}, {}^{70}\text{Br}\gamma)$ ${}^{40}\text{Ca}({}^{36}\text{Ar}, \alpha \text{pn}\gamma), ({}^{32}\text{S}, \text{pn}\gamma)$ С

E(level) [†]	J π ‡	T _{1/2} #	XREF	Comments
0.0	0+	79.1 ms 8	ABC	$%ε+%β^+=100$ T _{1/2} : weighted average of 80.2 ms 8 (1978Al23, from β(t)) and 78.5 ms 6 (1988Bu12, from β(t)). Other: 79 ms 36 (2002Lo13) and 70 ms 19 (2014Ro14). J ^π : super allowed ε to 0 ^{+ 70} Se.
933.6 <i>3</i>	2+	2.74 ps 40	BC	J^{π} : 933.6 γ E2 to 0 ⁺ .
1336.4 4	(3^{+})	22 ps 10	BC	J^{π} : 402.6y D to 2 ⁺ , 666y from 4 ⁺ .
1657.0 5	(5^{+})	374 ps 83	BC	J^{π} : 320.7 γ E2 to (3 ⁺).
1760.4 7 2002.3 4	4+	I	C C	T _{1/2} : from lineshape analysis of 321γ using forward angle data in 2014Ni09. J ^{π} : (3 ⁺) in 2002Je07. J ^{π} : 1068.8 γ E2 to 2 ⁺ .
2292.3 [@] 8	9+	2.2 s 2	С	 %ε+%β⁺=100 E(level): 2.23 MeV 9 deduced from decay energy of isomer and estimated Q value of ⁷⁰Br (2004Ka38). T_{1/2}: from β(t) in 1981Vo04. Other: 2.2 s 3 preliminary value given in 2002Ro25. %ε+%β⁺: IT decay has not been observed. J^π: Allowed ε decay to 8⁺, systematics.
2350.9 5	(5^{+})		С	J^{π} : 348.6 γ D to 4 ⁺ .
2677.0 6	(6^+)		С	J^{π} : 326.1 γ D to (5 ⁺).
2683.0 7	7+		С	J^{π} : 1026.0 γ E2 to 5 ⁺ , 390.7 γ to 9 ⁺ .
3027.3 ^a 8	(8^{+})		С	J^{π} : 344.4 γ D to 7 ⁺ , 734.8 γ to 9 ⁺ .
3098.5 <mark>&</mark> 9	(10^{+})		С	J^{π} : 806.2 γ D+Q to 9 ⁺ .
3547.2 [@] 8	11+		С	J^{π} : 1254.8y E2 to 9 ⁺ .

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁷⁰Br Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
3681.1 8	(8^{+})	С	J^{π} : 765.0 γ E2 from (10 ⁺).
4446.2 ^{<i>a</i>} 9	(10^{+})	С	J^{π} : 765 γ E2 to (8 ⁺).
4531.2 ^{&} 10	(12^{+})	С	J^{π} : 1432.6 γ to (10 ⁺); assumed E2 cascade member.
4884.8 [@] 9	(13^{+})	С	J^{π} : 1337.6 γ to 11 ⁺ ; assumed E2 cascade member.
5443.3 ^a 10	(12^{+})	С	J^{π} : 997.1 γ to (10 ⁺); assumed E2 cascade member.
6050.9 ^{&} 11	(14^{+})	С	J^{π} : 1519.7 γ to (12 ⁺); assumed E2 cascade member.
6487.4 [@] 10	(15^{+})	С	J ^{π} : 1602.6 γ to (13 ⁺); assumed E2 cascade member.
6787.9 ^a 11	(14^{+})	С	J^{π} : 1344.6 γ to (12 ⁺); assumed E2 cascade member.
7659.1 <i>13</i>		С	J^{π} : (16 ⁺) in 2002Je07.
7712.4 ^{&} 12	(16^{+})	С	J^{π} : 1661.5 γ to (14 ⁺); assumed E2 cascade member.
8069.8 [@] 11	(17^{+})	С	J^{π} : 1582.4 γ to (15 ⁺); assumed E2 cascade member.
8430.7 ^a 13	(16^{+})	С	J ^{π} : 1642.8 γ to (14 ⁺); assumed E2 cascade member.
9470.4 13		С	J^{π} : (18 ⁺) in 2002Je07.
9507.4 ^{&} 14	(18^{+})	С	J^{π} : 1795.0 γ to (16 ⁺); assumed E2 cascade member.
9782.0 [@] 12	(19+)	С	J^{π} : 1712.2 γ to (17 ⁺); assuming E2 cascade member.
11667.1 [@] 14	(21^{+})	С	J^{π} : 1885.0 γ to (19 ⁺); assumed E2 cascade member.
13786.0 [@] 15	(23 ⁺)	С	J^{π} : 2118.9 γ to (21 ⁺); assumed E2 cascade member.
16157.7 [@] 19	(25^+)	С	J^{π} : 2371.7 γ to (23 ⁺); assumed E2 cascade member.
18662.8 [@] 23	(27^{+})	С	J^{π} : 1866.2 γ to (25 ⁺); assumed E2 cascade member.
21411.9 [@] 25	(29^{+})	С	J^{π} : 2749 γ to (27 ⁺); assumed E2 cascade member.

 † From a least-squares fit to Ey, by evaluators.

[‡] From ⁴⁰Ca(³⁶Ar, α pn γ),(³²S,pn γ) (2002Je07) based on multipolarity determined by DCO ratios and band structure. Additional parenthesis have been added by the evaluators in some cases.

From RDDS in ${}^{9}\text{Be}({}^{71}\text{Br},{}^{70}\text{Br}\gamma)$ (2014Ni09), except where noted.

[@] Band(A): Configuration= $\pi g_{9/2} \otimes \nu g_{9/2}, \alpha = 1$.

& Band(B): Configuration= $\pi g_{9/2} \otimes v g_{9/2}, \alpha=0$.

^a Band(C): Band based on 3027, (8⁺) level.

$\gamma(^{70}\text{Br})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f = J_f^{\pi}$	Mult. [‡]	α	Comments
933.6	2+	933.6 <i>3</i>	100	0.0 0+	E2	5.38×10 ⁻⁴	$\alpha(K)=0.000479\ 7;\ \alpha(L)=5.07\times10^{-5}\ 8;$ $\alpha(M)=8.05\times10^{-6}\ 12;\ \alpha(N)=7.51\times10^{-7}\ 11$ B(E2)(Wu)=17.0.25
1336.4	(3 ⁺)	402.6 3	100	933.6 2+	D	0.00320	$\alpha(K)=0.00285 \ 4; \ \alpha(L)=0.000304 \ 5; \\ \alpha(M)=4.83\times10^{-5} \ 7; \ \alpha(N)=4.52\times10^{-6} \ 7$
1657.0	(5 ⁺)	320.7 3	100	1336.4 (3+)) E2	0.01264	$\alpha(\mathbf{K})=0.01116\ 16;\ \alpha(\mathbf{L})=0.001259\ 19;$ $\alpha(\mathbf{M})=0.000200\ 3;\ \alpha(\mathbf{N})=1.81\times10^{-5}\ 3$ $\mathbf{B}(\mathbf{E2})(\mathbf{W}.\mathbf{u}.)=26\ 6$
1760.4		424.0 5	100	1336.4 (3+))		
2002.3	4+	665.7 <i>3</i>		1336.4 (3+)		
		1068.8 <i>3</i>		933.6 2+	E2	3.92×10^{-4}	α (K)=0.000349 5; α (L)=3.68×10 ⁻⁵ 6; α (M)=5.84×10 ⁻⁶ 9; α (N)=5.46×10 ⁻⁷ 8
2350.9	(5 ⁺)	348.6 <i>4</i>		2002.3 4+	D	0.00453	α (K)=0.00402 6; α (L)=0.000430 7; α (M)=6.84×10 ⁻⁵ 10; α (N)=6.39×10 ⁻⁶ 10
		694.0 <i>4</i>		1657.0 (5+))		

Adopted Levels, Gammas (continued)

 $\gamma(^{70}\text{Br})$ (continued)

E_i(level) \mathbf{E}_{f} Mult.[‡] Comments α D 2677.0 326.1 2350.9 (5^{+}) 0.00532 $\alpha(K)=0.00473$ 7; $\alpha(L)=0.000507$ 8; $\alpha(M) = 8.06 \times 10^{-5}$ 12; $\alpha(N) = 7.53 \times 10^{-6}$ 11 7^{+} 390.7 4 47 7 2292.3 9+ 2683.0 4.30×10^{-4} $\alpha(K)=0.000383 6; \alpha(L)=4.05\times10^{-5} 6;$ 1026.0 5 100 13 1657.0 (5+) E2 $\alpha(M)=6.42\times10^{-6}$ 9; $\alpha(N)=6.00\times10^{-7}$ 9 $\alpha(K)=0.00414$ 6; $\alpha(L)=0.000443$ 7; 2683.0 7+ 3027.3 (8^+) 344.4 5 100 11 D 0.00466 $\alpha(M)=7.05\times10^{-5}$ 11; $\alpha(N)=6.59\times10^{-6}$ 10 734.8 4 76 13 2292.3 9+ 3098.5 (10^{+}) 806.2 4 100 2292.3 9+ D+Q 2.93×10^{-4} $\alpha(K)=0.000245$ 4; $\alpha(L)=2.57\times10^{-5}$ 4; 3547.2 11^{+} 1254.8 3 100 2292.3 9+ E2 $\alpha(M) = 4.08 \times 10^{-6} 6$; $\alpha(N) = 3.82 \times 10^{-7} 6$ 3681.1 (8^{+}) 998.0 5 100 2683.0 7⁺ 8.87×10^{-4} α (K)=0.000789 11; α (L)=8.43×10⁻⁵ 12; 4446.2 (10^{+}) 765.0 4 397 3681.1 (8⁺) E2 $\alpha(M) = 1.337 \times 10^{-5}$ 19; $\alpha(N)=1.243\times10^{-6}$ 18 1418.67 2.70×10^{-4} $\alpha(K)=0.000189 \ 3; \ \alpha(L)=1.98\times10^{-5} \ 3;$ 100 9 $3027.3 (8^+)$ E2 $\alpha(M)=3.14\times10^{-6}$ 5; $\alpha(N)=2.94\times10^{-7}$ 5 2292.3 9+ 2155.0 12 23 4 1432.6 5 3098.5 (10+) 4531.2 (12^{+}) 100 4884.8 (13^{+}) 1337.63 100 3547.2 11+ (12^{+}) 4446.2 (10+) 5443.3 997.1 5 100 (14^{+}) 6050.9 1519.7 4 100 4531.2 (12⁺) 6487.4 (15^{+}) 1602.6 4 100 4884.8 (13⁺) 1344.6 5 6787.9 (14^{+}) 100 5443.3 (12+) 7659.1 1608.2 6 100 6050.9 (14⁺) 7712.4 (16^{+}) 1661.5 5 100 6050.9 (14⁺) (17^{+}) 1582.4 4 8069.8 100 6487.4 (15⁺) (16^{+}) 1642.8 6 6787.9 (14+) 8430.7 100 9470.4 1758.0 5 100 7712.4 (16⁺) (18^{+}) 1795.0 6 9507.4 100 7712.4 (16+) 9782.0 (19^{+}) 1712.2 6 100 8069.8 (17⁺) 1885.06 11667.1 (21^{+}) 100 9782.0 (19⁺) 13786.0 2118.9 7 11667.1 (21+) (23^{+}) 100 16157.7 (25^{+}) 2371.7 11 100 13786.0 (23+) (27^{+}) 2505.0 13 18662.8 100 16157.7 (25+) 21411.9 (29^{+}) 2749 100 18662.8 (27⁺)

[†] From ${}^{40}Ca({}^{36}Ar,\alpha pn\gamma),({}^{32}S,pn\gamma)$ (2002Je07).

[‡] From DCO ratios in 40 Ca(36 Ar, α pn γ),(32 S,pn γ). Stretched Q are assumed E2.

Adopted Levels, Gammas Legend Level Scheme $\begin{array}{l} \bullet \quad I_{\gamma} < \ 2\% \times I_{\gamma}^{max} \\ \bullet \quad I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \bullet \quad I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ Intensities: Type not specified 401 100 (29+) 21411.9 + ²³05.0 100 (27^{+}) 18662.8 + 23_{71,7}100 (25+) 16157.7 4 2118.9 (23⁺) 13786.0 + 18850 100 (21^{+}) 11667.1 + 17123 100 001 0301 1 1,38,0 100 $\frac{(19^+)}{(18^+)}$ 9782.0 9507.4 + 162.5 10 - 1285, 100 -9470.4 5 100 $\frac{\frac{(16^+)}{(17^+)}}{\frac{(16^+)}{}}$ 8 8430.7 8069.8 7712.4 8 | 100 | 100 | 100 | 100 | 100 | 100 1349.1 7659.1 90j $\frac{(14^+)}{(15^+)}$ 6787.9 15/05 6487.4 -0 (14^{+}) 6050.9 1.65 1435.60 | 1,180 | 1,180 | 1,00 | -0 133,6 , (55) (52) (52) (52) (52) (52) (12⁺) 5502 5443.3 (13+) 4884.8 (12^+) ŝ 4531.2 .8 -8 2,20x0),1 1.% (10^{+}) - 001 Q 4446.2 3681.1 3547.2 (8+) % $\frac{11^+}{(10^+)}$ 10:07 3098.5 - 000 3027.3 2683.0 2292.3 (8^+) 7+ 9+ 2.2 s 2 (5⁺) 1657.0 374 ps 83 0.0 79.1 ms 8 0^+

⁷⁰₃₅Br₃₅

4

Adopted Levels, Gammas

 $^{70}_{35}{
m Br}_{35}$

Adopted Levels, Gammas

 $^{70}_{35}{
m Br}_{35}$