⁷Be ε decay 2002Ti10

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Hu, Tilley, Kelley, Godwin et al.	NP A708,3 (2002)	23-Aug-2001				

Parent: ⁷Be: E=0.0; $J^{\pi}=3/2^-$; $T_{1/2}=53.22 \text{ d} 6$; $Q(\varepsilon)=861.815 18$; ε decay=100 1949Se20: experiments on the effect of atomic electrons on the decay constant of ⁷Be. 1953Kr16: comparison of the values of the disintegration constant of ⁷Be In Be, BeO and BeF₂. 1956Bo36: nouvelle determination de la difference des periodes de ⁷Be matallique et de ⁷BeF₂. 1970Jo21: ⁷Be, measured $T_{1/2}$ In chemical compounds, deduced relative electron density At nucleus. 1972Sz02: ¹⁰Be(P, α) E=60-180 keV, measured σ (E), branching ratio for ⁷Be(ε)⁷Li, solid-state detectors. 1998Ga08: ⁷Be(ε)[from Be proton irradiation], measured K, L capture x-ray spectra. High efficiency calorimeter. 1999Hu20: ⁷Be(ε), measured E_{γ}, I_{γ} and T_{1/2}, deduced dependence on chemical environment. 1999Ra12: ⁷Be(ε)[from Li(p,X)], measured T_{1/2} for source implanted In Au and Al₂O₃.

Evaluation by R. G. Helmer and E. Schonfeld, 1996 and edited in December 2000. This evaluation was done as part of a collaboration of evaluators from Laboratoire National Henri Becquerel (LNHB) in France; Physikalisch-Technische Bundesanstalt (PTB) in Germany; HMS Sultan and AEA Technology in the United Kingdom; Khlopin Radium Institute (KRI) in Russia; Centro de Investigaciones Energeticas, Medioambientales, y Tecnologicas (CIEMAT) and Universidad Nacional a Distancia (UNED) in Spain; and Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Idaho National Engineering and Environmental Laboratory (INEEL) in the United States.

⁷Li Levels

E(level)	J^{π}	T _{1/2}		
0.0	$3/2^{-}$			
477.612 3	$1/2^{-}$	72.8 fs 20		

 ε radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	Comments		
(384.2 10)	477.612	10.44 4	3.556 2	εK=0.9700; $ε$ L=0.03004 Iε: Adopted weighted average of 10 +20-7 [L. H. Rumbaugh et al., Phys. Rev. 54 (1938) 657], 10.7 20 (1949Wi13), 11.8 12 (1949Tu06), 12.3 6 (1951Di12), 10.35 8 (1969TaZX), 10.47 20 (1970MuZU), 10.42 18 (1973Po10), 10.35 8 (1974Go26), 10.10 45 (1983Ba15), 10.61 23 (1983Da14), 10.6 5 (1983Do07), 10.9 11 (1983Ku10), 10.7 2 (1983Ma34), 9.8 5 (1983No03), 11.4 7 (1984Ev01), 10.61 17 (1984Fi10), and 10.49 7 (1984Sk01). The weighted average of these values is 10.444 with an internal uncertainty of 0.039, a reduced- $χ^2$ of 1.35, and an external uncertainty of 0.045		
(861.8 14)	0.0	89.56 4	3.324 1	 Iε: The adopted branching is dominated by the values of 1969TaZX, 1974Go24, and 1984Sk01 which contribute 23%, 23%, and 30% of the relative weight, respectively. The largest contribution to the reduced-χ² is 0.6 from 1951Di12. Iε: Values not used are: 10.32 <i>16</i> (1962Ta11, replaced by 1969TaZX), 10.5 2 [W. Poenitz, J. Nucl. Energy 20 (1966) 825, replaced by 1973Po10]. εK=0.9700; εL=0.03004 		

[†] Absolute intensity per 100 decays.

				7	Be ε deca	y 200	2Ti10 (cor	ntinued)	
						$\gamma(^{7}]$	Li)		
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E _f	J_f^{π} M	lult.	δ	α^{\ddagger}	Comments
477.6035 20	10.44 4	477.612	1/2-	0.0 3/	/2 ⁻ M1((+E2)	0.20 20	7.3×10 ⁻⁷ 11	E _γ : from evaluation of 2000He14. δ: from measured α value (1964Kr04). α: measured value (1964Kr04). Theoretical value interpolated from tables of 1976Ba63 are 7.73x10 ⁻⁷ for M1 and 2.96x10 ⁻⁶ for E2.

[†] Absolute intensity per 100 decays.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

⁷Be ε decay 2002Ti10

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

