History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Hu, Tilley, Kelley, Godwin et al.	NP A708,3 (2002)	23-Aug-2001				

Parent: ¹¹Be: E=0; $J^{\pi}=1/2^+$; $T_{1/2}=13.76$ s 7; $Q(\beta^-\alpha)=2845.15$ 61; $\%\beta^-\alpha$ decay=3.1 4

¹¹Be-T_{1/2}: from weighted average of 13.81 s 8 (1970Al21) and 13.57 s 15 (1959Wi49).

¹¹Be-Q($\beta^{-}\alpha$): from 2012Wa38.

- 1971Al07: ¹¹Be β -decay activity was produced in the ⁹Be(t,p)¹¹Be reaction by bombarding 50 μ g/cm² targets with 3.0-MeV tritons. Ge(Li) and NaI(Tl) detectors and Si detectors were used to measure γ -rays and α -particles. Eight γ -ray transitions and T_{1/2}=13.6 s 6 were measured. In general, the decay intensities to ¹¹B levels are deduced by balancing the observed γ -ray transitions and γ -decay branching ratios (BRs) with the observed rate of β -rays. The strongest ¹¹B transition is the 2125-keV γ ray from the first excited state to the ground state, which is directly fed and fed from higher-lying states.
- The delayed α -particle spectrum was also measured. The interpretation of this spectrum was complicated because the produced ¹¹Be activity was implanted into the target, and the observed energy depended on implantation depth, ¹¹B parent level, emission angle etc.. Analysis of the spectrum appeared most consistent with emission from ¹¹B*(9870). Two other potential α -emitting states at ¹¹B*(10250,10380) were unfavored.
- The delayed α Branching of 3.0% 7 from ¹¹B*(9870) to ⁷Li_{g.s.} was deduced, based on an analysis that found an intensity of 33% 3 for the 2125-keV γ ray. Observed delayed α -particles were not found in coincidence with 478-keV γ -rays from the first excited state of ⁷Li, but α -particle emission to the ⁷Li*(478) level could not be excluded because the relatively thick targets could absorb the alphas before they reached the detector. An upper limit of $\leq 5\%$ feeding to the excited state was suggested.
- 1981Al03: ¹¹Be β -delayed particle decays were measured using the ⁹Be(t,p)¹¹Be at E_t=3.4 MeV. The study was focused on measuring the β -delayed α -particle branch. Thin ⁹Be foils contained in a Helium-jet system permitted the capture of produced activity in the He cell; the activity was then deposited on a counting tape. The activity was transported to a counting area where Si and NaI(Tl) detectors were used to measure delayed particles and γ -rays.
- α particles and corresponding ⁷Li recoils ions were observed both in singles and in coincidence with 478 keV γ -rays. The α -particle energy spectrum was unambiguously assigned to decay from ¹¹B*(9870). The charged-particle spectrum observed in coincidence with E_{γ} =485 keV *10* provided evidence that some small branching takes place from ¹¹B*(9875) to the first excited ⁷Li*(478) state; the Branching for this decay is 12.6% *12*. It is then concluded that the Branching of ¹¹B*(9875) to ⁷Li_{g.s.} is 87.4% *12*. Compared with the well known E_{γ} =2125 keV intensity (I=0.33 *3*) and various cascades observed in the ¹¹B*(β^{-}) decay scheme, the Branching of 2.9% *4* to ¹¹B*(9875) was deduced.
- 1982Mi08: ¹¹Be β -decay γ -ray activities were studied in the ⁹Be(t,p)¹¹Be reaction by bombarding a ⁹Be foil with 3.0-MeV tritons. Ge(Li) and NaI(Tl) detectors and Pilot-B scintillation crystal were used to measure singles γ -ray, γ - γ coincidence and β spectra and β - γ coincidences, respectively.
- The intensity of 2125-keV γ -decay of 0.370 25 was deduced. Authors adopted the value of 0.355 18, which is the average of their value and the previous value of 0.33 3 (1971Al07).
- Comments: By normalizing the $I_{\alpha}/I_{2125\gamma}$ of (1981Al03) to the 2125-keV γ -decay intensity=0.355 *18* from (1982Mi08) a more precise value of the β -delayed α -decay intensity, I_{α} =0.031 *4*, was obtained. In (1981Al02) ¹¹B*(9875) was found to decay with Branching of 87.4% *12* and 12.6% *12* to ⁷Li*(0,478), respectively.

⁷Li Levels

E(level) [†]	$J^{\pi \dagger}$
0.0	3/2 ⁻
477.612 <i>3</i>	1/2 ⁻

[†] From Adopted dataset for ⁷Li in ENSDF database.

¹¹Be $\beta^{-}\alpha$ decay 1971Al07,1981Al03,1982Mi08 (continued)

 $\gamma(^7\text{Li})$

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}
477.6	0.39	477.612	1/2-	0.0	3/2-

[†] Absolute intensity per 100 decays.

Delayed Alphas (7Li)

$E(\alpha)$	E(⁷ Li)	$I(\alpha)^{\dagger}$	$E(^{11}B)$
465.4 26	477.612	0.39 4	9873
769.3 26	0.0	2.71 39	9873

[†] Absolute intensity per 100 decays.

¹¹Be $\beta^{-}\alpha$ decay 1971Al07,1981Al03,1982Mi08

Decay Scheme

 γ Intensities: $I_{(\gamma+ce)}$ per 100 parent decays $I(\alpha)$ Intensities: $I(\alpha)$ per 100 parent decays

